Question
Simplify the expression
6013x−224x3
Evaluate
6013x−x3×224
Solution
6013x−224x3
Show Solution

Factor the expression
7x(859−32x2)
Evaluate
6013x−x3×224
Use the commutative property to reorder the terms
6013x−224x3
Rewrite the expression
7x×859−7x×32x2
Solution
7x(859−32x2)
Show Solution

Find the roots
x1=−81718,x2=0,x3=81718
Alternative Form
x1≈−5.181095,x2=0,x3≈5.181095
Evaluate
6013x−x3×224
To find the roots of the expression,set the expression equal to 0
6013x−x3×224=0
Use the commutative property to reorder the terms
6013x−224x3=0
Factor the expression
7x(859−32x2)=0
Divide both sides
x(859−32x2)=0
Separate the equation into 2 possible cases
x=0859−32x2=0
Solve the equation
More Steps

Evaluate
859−32x2=0
Move the constant to the right-hand side and change its sign
−32x2=0−859
Removing 0 doesn't change the value,so remove it from the expression
−32x2=−859
Change the signs on both sides of the equation
32x2=859
Divide both sides
3232x2=32859
Divide the numbers
x2=32859
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±32859
Simplify the expression
More Steps

Evaluate
32859
To take a root of a fraction,take the root of the numerator and denominator separately
32859
Simplify the radical expression
42859
Multiply by the Conjugate
42×2859×2
Multiply the numbers
42×21718
Multiply the numbers
81718
x=±81718
Separate the equation into 2 possible cases
x=81718x=−81718
x=0x=81718x=−81718
Solution
x1=−81718,x2=0,x3=81718
Alternative Form
x1≈−5.181095,x2=0,x3≈5.181095
Show Solution
