Question
Simplify the expression
2b9297825
Evaluate
161575÷(b×4536)
Cancel out the common factor 3
161575÷(b×1512)
Divide the terms
61575÷(b×1512)
Use the commutative property to reorder the terms
61575÷1512b
Rewrite the expression
61575÷1512b
Multiply by the reciprocal
61575×2b151
Multiply the terms
2b61575×151
Solution
2b9297825
Show Solution

Find the excluded values
b=0
Evaluate
161575÷(b×4536)
To find the excluded values,set the denominators equal to 0
b×4536=0
Simplify
More Steps

Evaluate
b×4536
Cancel out the common factor 3
b×1512
Use the commutative property to reorder the terms
1512b
1512b=0
Solution
b=0
Show Solution

Find the roots
b∈∅
Evaluate
161575÷(b×4536)
To find the roots of the expression,set the expression equal to 0
161575÷(b×4536)=0
Find the domain
More Steps

Evaluate
b×4536=0
Simplify
More Steps

Evaluate
b×4536
Cancel out the common factor 3
b×1512
Use the commutative property to reorder the terms
1512b
1512b=0
Rewrite the expression
b=0
161575÷(b×4536)=0,b=0
Calculate
161575÷(b×4536)=0
Cancel out the common factor 3
161575÷(b×1512)=0
Divide the terms
61575÷(b×1512)=0
Use the commutative property to reorder the terms
61575÷1512b=0
Divide the terms
More Steps

Evaluate
61575÷1512b
Rewrite the expression
61575÷1512b
Multiply by the reciprocal
61575×2b151
Multiply the terms
2b61575×151
Multiply the terms
2b9297825
2b9297825=0
Cross multiply
9297825=2b×0
Simplify the equation
9297825=0
Solution
b∈∅
Show Solution
