Question
Simplify the expression
62+11714b
Evaluate
62−2b(226−6083)
Subtract the numbers
62−2b(−5857)
Multiply
More Steps

Multiply the terms
2b(−5857)
Rewrite the expression
−2b×5857
Multiply the terms
−11714b
62−(−11714b)
Solution
62+11714b
Show Solution

Factor the expression
2(31+5857b)
Evaluate
62−2b(226−6083)
Subtract the numbers
62−2b(−5857)
Multiply
More Steps

Multiply the terms
2b(−5857)
Rewrite the expression
−2b×5857
Multiply the terms
−11714b
62−(−11714b)
Rewrite the expression
62+11714b
Solution
2(31+5857b)
Show Solution

Find the roots
b=−585731
Alternative Form
b≈−0.005293
Evaluate
62−2b(226−6083)
To find the roots of the expression,set the expression equal to 0
62−2b(226−6083)=0
Subtract the numbers
62−2b(−5857)=0
Multiply
More Steps

Multiply the terms
2b(−5857)
Rewrite the expression
−2b×5857
Multiply the terms
−11714b
62−(−11714b)=0
Rewrite the expression
62+11714b=0
Move the constant to the right-hand side and change its sign
11714b=0−62
Removing 0 doesn't change the value,so remove it from the expression
11714b=−62
Divide both sides
1171411714b=11714−62
Divide the numbers
b=11714−62
Solution
More Steps

Evaluate
11714−62
Cancel out the common factor 2
5857−31
Use b−a=−ba=−ba to rewrite the fraction
−585731
b=−585731
Alternative Form
b≈−0.005293
Show Solution
