Question
Simplify the expression
42495−103a
Evaluate
625−45−103a×1
Multiply the terms
625−45−103a
Solution
More Steps

Evaluate
625−45
Reduce fractions to a common denominator
4625×4−45
Write all numerators above the common denominator
4625×4−5
Multiply the numbers
42500−5
Subtract the numbers
42495
42495−103a
Show Solution

Factor the expression
41(2495−412a)
Evaluate
625−45−103a×1
Multiply the terms
625−45−103a
Subtract the numbers
More Steps

Simplify
625−45
Reduce fractions to a common denominator
4625×4−45
Write all numerators above the common denominator
4625×4−5
Multiply the numbers
42500−5
Subtract the numbers
42495
42495−103a
Solution
41(2495−412a)
Show Solution

Find the roots
a=4122495
Alternative Form
a≈6.055825
Evaluate
625−45−103a×1
To find the roots of the expression,set the expression equal to 0
625−45−103a×1=0
Multiply the terms
625−45−103a=0
Subtract the numbers
More Steps

Simplify
625−45
Reduce fractions to a common denominator
4625×4−45
Write all numerators above the common denominator
4625×4−5
Multiply the numbers
42500−5
Subtract the numbers
42495
42495−103a=0
Move the constant to the right-hand side and change its sign
−103a=0−42495
Removing 0 doesn't change the value,so remove it from the expression
−103a=−42495
Change the signs on both sides of the equation
103a=42495
Multiply by the reciprocal
103a×1031=42495×1031
Multiply
a=42495×1031
Solution
More Steps

Evaluate
42495×1031
To multiply the fractions,multiply the numerators and denominators separately
4×1032495
Multiply the numbers
4122495
a=4122495
Alternative Form
a≈6.055825
Show Solution
