Question
Simplify the expression
−90a2−6a−9
Evaluate
6a2−3a−96a2−3a−9
Subtract the terms
More Steps

Evaluate
6a2−96a2
Collect like terms by calculating the sum or difference of their coefficients
(6−96)a2
Subtract the numbers
−90a2
−90a2−3a−3a−9
Solution
More Steps

Evaluate
−3a−3a
Collect like terms by calculating the sum or difference of their coefficients
(−3−3)a
Subtract the numbers
−6a
−90a2−6a−9
Show Solution

Factor the expression
−3(30a2+2a+3)
Evaluate
6a2−3a−96a2−3a−9
Subtract the terms
More Steps

Simplify
6a2−3a−96a2
Subtract the terms
More Steps

Evaluate
6a2−96a2
Collect like terms by calculating the sum or difference of their coefficients
(6−96)a2
Subtract the numbers
−90a2
−90a2−3a
−90a2−3a−3a−9
Subtract the terms
More Steps

Simplify
−90a2−3a−3a
Subtract the terms
More Steps

Evaluate
−3a−3a
Collect like terms by calculating the sum or difference of their coefficients
(−3−3)a
Subtract the numbers
−6a
−90a2−6a
−90a2−6a−9
Solution
−3(30a2+2a+3)
Show Solution

Find the roots
a1=−301−3089i,a2=−301+3089i
Alternative Form
a1≈−0.03˙−0.314466i,a2≈−0.03˙+0.314466i
Evaluate
6a2−3a−96a2−3a−9
To find the roots of the expression,set the expression equal to 0
6a2−3a−96a2−3a−9=0
Subtract the terms
More Steps

Simplify
6a2−3a−96a2
Subtract the terms
More Steps

Evaluate
6a2−96a2
Collect like terms by calculating the sum or difference of their coefficients
(6−96)a2
Subtract the numbers
−90a2
−90a2−3a
−90a2−3a−3a−9=0
Subtract the terms
More Steps

Simplify
−90a2−3a−3a
Subtract the terms
More Steps

Evaluate
−3a−3a
Collect like terms by calculating the sum or difference of their coefficients
(−3−3)a
Subtract the numbers
−6a
−90a2−6a
−90a2−6a−9=0
Multiply both sides
90a2+6a+9=0
Substitute a=90,b=6 and c=9 into the quadratic formula a=2a−b±b2−4ac
a=2×90−6±62−4×90×9
Simplify the expression
a=180−6±62−4×90×9
Simplify the expression
More Steps

Evaluate
62−4×90×9
Multiply the terms
More Steps

Multiply the terms
4×90×9
Multiply the terms
360×9
Multiply the numbers
3240
62−3240
Evaluate the power
36−3240
Subtract the numbers
−3204
a=180−6±−3204
Simplify the radical expression
More Steps

Evaluate
−3204
Evaluate the power
3204×−1
Evaluate the power
3204×i
Evaluate the power
More Steps

Evaluate
3204
Write the expression as a product where the root of one of the factors can be evaluated
36×89
Write the number in exponential form with the base of 6
62×89
The root of a product is equal to the product of the roots of each factor
62×89
Reduce the index of the radical and exponent with 2
689
689×i
a=180−6±689×i
Separate the equation into 2 possible cases
a=180−6+689×ia=180−6−689×i
Simplify the expression
More Steps

Evaluate
a=180−6+689×i
Divide the terms
More Steps

Evaluate
180−6+689×i
Rewrite the expression
1806(−1+89×i)
Cancel out the common factor 6
30−1+89×i
Use b−a=−ba=−ba to rewrite the fraction
−301−89×i
Simplify
−301+3089i
a=−301+3089i
a=−301+3089ia=180−6−689×i
Simplify the expression
More Steps

Evaluate
a=180−6−689×i
Divide the terms
More Steps

Evaluate
180−6−689×i
Rewrite the expression
1806(−1−89×i)
Cancel out the common factor 6
30−1−89×i
Use b−a=−ba=−ba to rewrite the fraction
−301+89×i
Simplify
−301−3089i
a=−301−3089i
a=−301+3089ia=−301−3089i
Solution
a1=−301−3089i,a2=−301+3089i
Alternative Form
a1≈−0.03˙−0.314466i,a2≈−0.03˙+0.314466i
Show Solution
