Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
a1=1267−3103,a2=1267+3103
Alternative Form
a1≈0.941285,a2≈10.225381
Evaluate
6a2−67a+4231=0
Multiply both sides
4(6a2−67a+4231)=4×0
Calculate
24a2−268a+231=0
Substitute a=24,b=−268 and c=231 into the quadratic formula a=2a−b±b2−4ac
a=2×24268±(−268)2−4×24×231
Simplify the expression
a=48268±(−268)2−4×24×231
Simplify the expression
More Steps

Evaluate
(−268)2−4×24×231
Multiply the terms
More Steps

Multiply the terms
4×24×231
Multiply the terms
96×231
Multiply the numbers
22176
(−268)2−22176
Calculate
2682−22176
a=48268±2682−22176
Simplify the radical expression
More Steps

Evaluate
2682−22176
Expand the expression
49648
Write the expression as a product where the root of one of the factors can be evaluated
16×3103
Write the number in exponential form with the base of 4
42×3103
The root of a product is equal to the product of the roots of each factor
42×3103
Reduce the index of the radical and exponent with 2
43103
a=48268±43103
Separate the equation into 2 possible cases
a=48268+43103a=48268−43103
Simplify the expression
More Steps

Evaluate
a=48268+43103
Divide the terms
More Steps

Evaluate
48268+43103
Rewrite the expression
484(67+3103)
Cancel out the common factor 4
1267+3103
a=1267+3103
a=1267+3103a=48268−43103
Simplify the expression
More Steps

Evaluate
a=48268−43103
Divide the terms
More Steps

Evaluate
48268−43103
Rewrite the expression
484(67−3103)
Cancel out the common factor 4
1267−3103
a=1267−3103
a=1267+3103a=1267−3103
Solution
a1=1267−3103,a2=1267+3103
Alternative Form
a1≈0.941285,a2≈10.225381
Show Solution
