Question Simplify the expression 6log10(10x3)×x−12log10(10x3)Alternative Form 6x+18log10(x)×x−12−36log10(x) Evaluate 6log10(10x3)×log10(10)×(x−2)A logarithm with the same base and argument equals 1 6log10(10x3)×1×(x−2)Any expression multiplied by 1 remains the same 6log10(10x3)×(x−2)Apply the distributive property 6log10(10x3)×x+6log10(10x3)×(−2)Solution More Steps Evaluate 6log10(10x3)×(−2)Rewrite the expression −6log10(10x3)×2Multiply the terms −12log10(10x3) 6log10(10x3)×x−12log10(10x3)Alternative Form 6x+18log10(x)×x−12−36log10(x) Show Solution