Question
Solve the equation
Solve for x
Solve for y
x=0x=2384
Evaluate
6x×7y=4x4y
Multiply the terms
42xy=4x4y
Rewrite the expression
42yx=4yx4
Add or subtract both sides
42yx−4yx4=0
Factor the expression
2yx(21−2x3)=0
Divide both sides
x(21−2x3)=0
Separate the equation into 2 possible cases
x=021−2x3=0
Solution
More Steps

Evaluate
21−2x3=0
Move the constant to the right-hand side and change its sign
−2x3=0−21
Removing 0 doesn't change the value,so remove it from the expression
−2x3=−21
Change the signs on both sides of the equation
2x3=21
Divide both sides
22x3=221
Divide the numbers
x3=221
Take the 3-th root on both sides of the equation
3x3=3221
Calculate
x=3221
Simplify the root
More Steps

Evaluate
3221
To take a root of a fraction,take the root of the numerator and denominator separately
32321
Multiply by the Conjugate
32×322321×322
Simplify
32×322321×34
Multiply the numbers
32×322384
Multiply the numbers
2384
x=2384
x=0x=2384
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
6x×7y=4x4y
Multiply the terms
42xy=4x4y
To test if the graph of 42xy=4x4y is symmetry with respect to the origin,substitute -x for x and -y for y
42(−x)(−y)=4(−x)4(−y)
Evaluate
42xy=4(−x)4(−y)
Evaluate
More Steps

Evaluate
4(−x)4(−y)
Any expression multiplied by 1 remains the same
−4(−x)4y
Multiply the terms
−4x4y
42xy=−4x4y
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=32321×sec(θ)
Evaluate
6x×7y=4x4y
Evaluate
42xy=4x4y
Move the expression to the left side
42xy−4x4y=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
42cos(θ)×rsin(θ)×r−4(cos(θ)×r)4sin(θ)×r=0
Factor the expression
−4cos4(θ)sin(θ)×r5+42cos(θ)sin(θ)×r2=0
Simplify the expression
−4cos4(θ)sin(θ)×r5+21sin(2θ)×r2=0
Factor the expression
r2(−4cos4(θ)sin(θ)×r3+21sin(2θ))=0
When the product of factors equals 0,at least one factor is 0
r2=0−4cos4(θ)sin(θ)×r3+21sin(2θ)=0
Evaluate
r=0−4cos4(θ)sin(θ)×r3+21sin(2θ)=0
Solution
More Steps

Factor the expression
−4cos4(θ)sin(θ)×r3+21sin(2θ)=0
Subtract the terms
−4cos4(θ)sin(θ)×r3+21sin(2θ)−21sin(2θ)=0−21sin(2θ)
Evaluate
−4cos4(θ)sin(θ)×r3=−21sin(2θ)
Divide the terms
r3=4cos4(θ)sin(θ)21sin(2θ)
Simplify the expression
r3=221sec3(θ)
Simplify the expression
More Steps

Evaluate
3221sec3(θ)
To take a root of a fraction,take the root of the numerator and denominator separately
32321sec3(θ)
Simplify the radical expression
32321×sec(θ)
r=32321×sec(θ)
r=0r=32321×sec(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=21x−2x48yx3−21y
Calculate
6x7y=4x4y
Simplify the expression
42xy=4x4y
Take the derivative of both sides
dxd(42xy)=dxd(4x4y)
Calculate the derivative
More Steps

Evaluate
dxd(42xy)
Use differentiation rules
dxd(42x)×y+42x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(42x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
42×dxd(x)
Use dxdxn=nxn−1 to find derivative
42×1
Any expression multiplied by 1 remains the same
42
42y+42x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
42y+42xdxdy
42y+42xdxdy=dxd(4x4y)
Calculate the derivative
More Steps

Evaluate
dxd(4x4y)
Use differentiation rules
dxd(4x4)×y+4x4×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(4x4)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
4×dxd(x4)
Use dxdxn=nxn−1 to find derivative
4×4x3
Multiply the terms
16x3
16x3y+4x4×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
16x3y+4x4dxdy
42y+42xdxdy=16x3y+4x4dxdy
Move the expression to the left side
42y+42xdxdy−4x4dxdy=16x3y
Move the expression to the right side
42xdxdy−4x4dxdy=16x3y−42y
Collect like terms by calculating the sum or difference of their coefficients
(42x−4x4)dxdy=16x3y−42y
Divide both sides
42x−4x4(42x−4x4)dxdy=42x−4x416x3y−42y
Divide the numbers
dxdy=42x−4x416x3y−42y
Solution
More Steps

Evaluate
42x−4x416x3y−42y
Rewrite the expression
42x−4x42(8yx3−21y)
Rewrite the expression
2(21x−2x4)2(8yx3−21y)
Reduce the fraction
21x−2x48yx3−21y
dxdy=21x−2x48yx3−21y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=441x2−84x5+4x8882y−168x3y+80x6y
Calculate
6x7y=4x4y
Simplify the expression
42xy=4x4y
Take the derivative of both sides
dxd(42xy)=dxd(4x4y)
Calculate the derivative
More Steps

Evaluate
dxd(42xy)
Use differentiation rules
dxd(42x)×y+42x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(42x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
42×dxd(x)
Use dxdxn=nxn−1 to find derivative
42×1
Any expression multiplied by 1 remains the same
42
42y+42x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
42y+42xdxdy
42y+42xdxdy=dxd(4x4y)
Calculate the derivative
More Steps

Evaluate
dxd(4x4y)
Use differentiation rules
dxd(4x4)×y+4x4×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(4x4)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
4×dxd(x4)
Use dxdxn=nxn−1 to find derivative
4×4x3
Multiply the terms
16x3
16x3y+4x4×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
16x3y+4x4dxdy
42y+42xdxdy=16x3y+4x4dxdy
Move the expression to the left side
42y+42xdxdy−4x4dxdy=16x3y
Move the expression to the right side
42xdxdy−4x4dxdy=16x3y−42y
Collect like terms by calculating the sum or difference of their coefficients
(42x−4x4)dxdy=16x3y−42y
Divide both sides
42x−4x4(42x−4x4)dxdy=42x−4x416x3y−42y
Divide the numbers
dxdy=42x−4x416x3y−42y
Divide the numbers
More Steps

Evaluate
42x−4x416x3y−42y
Rewrite the expression
42x−4x42(8yx3−21y)
Rewrite the expression
2(21x−2x4)2(8yx3−21y)
Reduce the fraction
21x−2x48yx3−21y
dxdy=21x−2x48yx3−21y
Take the derivative of both sides
dxd(dxdy)=dxd(21x−2x48yx3−21y)
Calculate the derivative
dx2d2y=dxd(21x−2x48yx3−21y)
Use differentiation rules
dx2d2y=(21x−2x4)2dxd(8yx3−21y)×(21x−2x4)−(8yx3−21y)×dxd(21x−2x4)
Calculate the derivative
More Steps

Evaluate
dxd(8yx3−21y)
Use differentiation rules
dxd(8yx3)+dxd(−21y)
Evaluate the derivative
24x2y+8x3dxdy+dxd(−21y)
Evaluate the derivative
24x2y+8x3dxdy−21dxdy
dx2d2y=(21x−2x4)2(24x2y+8x3dxdy−21dxdy)(21x−2x4)−(8yx3−21y)×dxd(21x−2x4)
Calculate the derivative
More Steps

Evaluate
dxd(21x−2x4)
Use differentiation rules
dxd(21x)+dxd(−2x4)
Evaluate the derivative
21+dxd(−2x4)
Evaluate the derivative
21−8x3
dx2d2y=(21x−2x4)2(24x2y+8x3dxdy−21dxdy)(21x−2x4)−(8yx3−21y)(21−8x3)
Calculate
More Steps

Evaluate
(24x2y+8x3dxdy−21dxdy)(21x−2x4)
Use the the distributive property to expand the expression
(24x2y+8x3dxdy)(21x−2x4)−21dxdy×(21x−2x4)
Multiply the terms
504x3y−48x6y+168x4dxdy−16x7dxdy−21dxdy×(21x−2x4)
Multiply the terms
504x3y−48x6y+168x4dxdy−16x7dxdy−441xdxdy+42x4dxdy
Calculate
504x3y−48x6y+210x4dxdy−16x7dxdy−441xdxdy
dx2d2y=(21x−2x4)2504x3y−48x6y+210x4dxdy−16x7dxdy−441xdxdy−(8yx3−21y)(21−8x3)
Calculate
More Steps

Evaluate
(8yx3−21y)(21−8x3)
Use the the distributive property to expand the expression
(8yx3−21y)×21+(8yx3−21y)(−8x3)
Multiply the terms
168yx3−441y+(8yx3−21y)(−8x3)
Multiply the terms
168yx3−441y−64yx6+168yx3
Calculate
336yx3−441y−64yx6
dx2d2y=(21x−2x4)2504x3y−48x6y+210x4dxdy−16x7dxdy−441xdxdy−(336yx3−441y−64yx6)
Calculate
More Steps

Calculate
504x3y−48x6y+210x4dxdy−16x7dxdy−441xdxdy−(336yx3−441y−64yx6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
504x3y−48x6y+210x4dxdy−16x7dxdy−441xdxdy−336yx3+441y+64yx6
Subtract the terms
168x3y−48x6y+210x4dxdy−16x7dxdy−441xdxdy+441y+64yx6
Add the terms
168x3y+16x6y+210x4dxdy−16x7dxdy−441xdxdy+441y
dx2d2y=(21x−2x4)2168x3y+16x6y+210x4dxdy−16x7dxdy−441xdxdy+441y
Use equation dxdy=21x−2x48yx3−21y to substitute
dx2d2y=(21x−2x4)2168x3y+16x6y+210x4×21x−2x48yx3−21y−16x7×21x−2x48yx3−21y−441x×21x−2x48yx3−21y+441y
Solution
More Steps

Calculate
(21x−2x4)2168x3y+16x6y+210x4×21x−2x48yx3−21y−16x7×21x−2x48yx3−21y−441x×21x−2x48yx3−21y+441y
Multiply the terms
More Steps

Multiply the terms
210x4×21x−2x48yx3−21y
Rewrite the expression
210x4×x(21−2x3)8yx3−21y
Cancel out the common factor x
210x3×21−2x38yx3−21y
Multiply the terms
21−2x3210x3(8yx3−21y)
(21x−2x4)2168x3y+16x6y+21−2x3210x3(8yx3−21y)−16x7×21x−2x48yx3−21y−441x×21x−2x48yx3−21y+441y
Multiply the terms
(21x−2x4)2168x3y+16x6y+21−2x3210x3(8yx3−21y)−21−2x316x6(8yx3−21y)−441x×21x−2x48yx3−21y+441y
Multiply the terms
(21x−2x4)2168x3y+16x6y+21−2x3210x3(8yx3−21y)−21−2x316x6(8yx3−21y)−21−2x3441(8yx3−21y)+441y
Calculate the sum or difference
More Steps

Evaluate
168x3y+16x6y+21−2x3210x3(8yx3−21y)−21−2x316x6(8yx3−21y)−21−2x3441(8yx3−21y)+441y
Reduce fractions to a common denominator
21−2x3168x3y(21−2x3)+21−2x316x6y(21−2x3)+21−2x3210x3(8yx3−21y)−21−2x316x6(8yx3−21y)−21−2x3441(8yx3−21y)+21−2x3441y(21−2x3)
Write all numerators above the common denominator
21−2x3168x3y(21−2x3)+16x6y(21−2x3)+210x3(8yx3−21y)−16x6(8yx3−21y)−441(8yx3−21y)+441y(21−2x3)
Multiply the terms
21−2x33528x3y−336x6y+16x6y(21−2x3)+210x3(8yx3−21y)−16x6(8yx3−21y)−441(8yx3−21y)+441y(21−2x3)
Multiply the terms
21−2x33528x3y−336x6y+336x6y−32x9y+210x3(8yx3−21y)−16x6(8yx3−21y)−441(8yx3−21y)+441y(21−2x3)
Multiply the terms
21−2x33528x3y−336x6y+336x6y−32x9y+1680yx6−4410yx3−16x6(8yx3−21y)−441(8yx3−21y)+441y(21−2x3)
Multiply the terms
21−2x33528x3y−336x6y+336x6y−32x9y+1680yx6−4410yx3−(128yx9−336yx6)−441(8yx3−21y)+441y(21−2x3)
Multiply the terms
21−2x33528x3y−336x6y+336x6y−32x9y+1680yx6−4410yx3−(128yx9−336yx6)−(3528yx3−9261y)+441y(21−2x3)
Multiply the terms
21−2x33528x3y−336x6y+336x6y−32x9y+1680yx6−4410yx3−(128yx9−336yx6)−(3528yx3−9261y)+9261y−882x3y
Calculate the sum or difference
21−2x3−5292x3y+2016yx6−160x9y+18522y
Factor the expression
21−2x3(−2x3+21)(882y−168x3y+80x6y)
Rewrite the expression
−2x3+21(−2x3+21)(882y−168x3y+80x6y)
Reduce the fraction
882y−168x3y+80x6y
(21x−2x4)2882y−168x3y+80x6y
Expand the expression
More Steps

Evaluate
(21x−2x4)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(21x)2−2×21x×2x4+(2x4)2
Calculate
441x2−84x5+4x8
441x2−84x5+4x8882y−168x3y+80x6y
dx2d2y=441x2−84x5+4x8882y−168x3y+80x6y
Show Solution
