Question
Find the roots
x1=123−105,x2=123+105
Alternative Form
x1≈−0.603913,x2≈1.103913
Evaluate
6x2−3x−4
To find the roots of the expression,set the expression equal to 0
6x2−3x−4=0
Substitute a=6,b=−3 and c=−4 into the quadratic formula x=2a−b±b2−4ac
x=2×63±(−3)2−4×6(−4)
Simplify the expression
x=123±(−3)2−4×6(−4)
Simplify the expression
More Steps

Evaluate
(−3)2−4×6(−4)
Multiply
More Steps

Multiply the terms
4×6(−4)
Rewrite the expression
−4×6×4
Multiply the terms
−96
(−3)2−(−96)
Rewrite the expression
32−(−96)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+96
Evaluate the power
9+96
Add the numbers
105
x=123±105
Separate the equation into 2 possible cases
x=123+105x=123−105
Solution
x1=123−105,x2=123+105
Alternative Form
x1≈−0.603913,x2≈1.103913
Show Solution
