Question
Solve the equation
Solve for x
Solve for o
x=61+169+6ox=61−169+6o
Evaluate
6x2−2x−28=o
Move the expression to the left side
6x2−2x−28−o=0
Substitute a=6,b=−2 and c=−28−o into the quadratic formula x=2a−b±b2−4ac
x=2×62±(−2)2−4×6(−28−o)
Simplify the expression
x=122±(−2)2−4×6(−28−o)
Simplify the expression
More Steps

Evaluate
(−2)2−4×6(−28−o)
Multiply the terms
More Steps

Multiply the terms
4×6(−28−o)
Multiply the terms
24(−28−o)
Apply the distributive property
−24×28−24o
Multiply the numbers
−672−24o
(−2)2−(−672−24o)
Rewrite the expression
22−(−672−24o)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+672+24o
Evaluate the power
4+672+24o
Add the numbers
676+24o
x=122±676+24o
Simplify the radical expression
More Steps

Evaluate
676+24o
Factor the expression
4(169+6o)
The root of a product is equal to the product of the roots of each factor
4×169+6o
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
2169+6o
x=122±2169+6o
Separate the equation into 2 possible cases
x=122+2169+6ox=122−2169+6o
Simplify the expression
More Steps

Evaluate
x=122+2169+6o
Divide the terms
More Steps

Evaluate
122+2169+6o
Rewrite the expression
122(1+169+6o)
Cancel out the common factor 2
61+169+6o
x=61+169+6o
x=61+169+6ox=122−2169+6o
Solution
More Steps

Evaluate
x=122−2169+6o
Divide the terms
More Steps

Evaluate
122−2169+6o
Rewrite the expression
122(1−169+6o)
Cancel out the common factor 2
61−169+6o
x=61−169+6o
x=61+169+6ox=61−169+6o
Show Solution
