Question
Solve the equation
Solve for x
Solve for y
x=6336y
Evaluate
6x2×xy−y2=0
Multiply
More Steps

Evaluate
6x2×xy
Multiply the terms with the same base by adding their exponents
6x2+1y
Add the numbers
6x3y
6x3y−y2=0
Rewrite the expression
6yx3−y2=0
Move the expression to the right-hand side and change its sign
6yx3=0+y2
Add the terms
6yx3=y2
Divide both sides
6y6yx3=6yy2
Divide the numbers
x3=6yy2
Divide the numbers
More Steps

Evaluate
yy2
Use the product rule aman=an−m to simplify the expression
y2−1
Subtract the terms
y1
Simplify
y
x3=6y
Take the 3-th root on both sides of the equation
3x3=36y
Calculate
x=36y
Solution
More Steps

Evaluate
36y
To take a root of a fraction,take the root of the numerator and denominator separately
363y
Multiply by the Conjugate
36×3623y×362
Calculate
63y×362
Calculate
More Steps

Evaluate
3y×362
The product of roots with the same index is equal to the root of the product
3y×62
Calculate the product
362y
6362y
Calculate
6336y
x=6336y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
6x2×xy−y2=0
Multiply
More Steps

Evaluate
6x2×xy
Multiply the terms with the same base by adding their exponents
6x2+1y
Add the numbers
6x3y
6x3y−y2=0
To test if the graph of 6x3y−y2=0 is symmetry with respect to the origin,substitute -x for x and -y for y
6(−x)3(−y)−(−y)2=0
Evaluate
More Steps

Evaluate
6(−x)3(−y)−(−y)2
Multiply the terms
More Steps

Multiply the terms
6(−x)3(−y)
Any expression multiplied by 1 remains the same
−6(−x)3y
Multiply the terms
−(−6x3y)
Multiply the first two terms
6x3y
6x3y−(−y)2
Rewrite the expression
6x3y−y2
6x3y−y2=0
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=6cos3(θ)sin(θ)r=−6cos3(θ)sin(θ)
Evaluate
6x2×xy−y2=0
Evaluate
More Steps

Evaluate
6x2×xy−y2
Multiply
More Steps

Evaluate
6x2×xy
Multiply the terms with the same base by adding their exponents
6x2+1y
Add the numbers
6x3y
6x3y−y2
6x3y−y2=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
6(cos(θ)×r)3sin(θ)×r−(sin(θ)×r)2=0
Factor the expression
6cos3(θ)sin(θ)×r4−sin2(θ)×r2=0
Factor the expression
r2(6cos3(θ)sin(θ)×r2−sin2(θ))=0
When the product of factors equals 0,at least one factor is 0
r2=06cos3(θ)sin(θ)×r2−sin2(θ)=0
Evaluate
r=06cos3(θ)sin(θ)×r2−sin2(θ)=0
Solution
More Steps

Factor the expression
6cos3(θ)sin(θ)×r2−sin2(θ)=0
Subtract the terms
6cos3(θ)sin(θ)×r2−sin2(θ)−(−sin2(θ))=0−(−sin2(θ))
Evaluate
6cos3(θ)sin(θ)×r2=sin2(θ)
Divide the terms
r2=6cos3(θ)sin(θ)
Evaluate the power
r=±6cos3(θ)sin(θ)
Separate into possible cases
r=6cos3(θ)sin(θ)r=−6cos3(θ)sin(θ)
r=0r=6cos3(θ)sin(θ)r=−6cos3(θ)sin(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−3x3−y9x2y
Calculate
6x2xy−y2=0
Simplify the expression
6x3y−y2=0
Take the derivative of both sides
dxd(6x3y−y2)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(6x3y−y2)
Use differentiation rules
dxd(6x3y)+dxd(−y2)
Evaluate the derivative
More Steps

Evaluate
dxd(6x3y)
Use differentiation rules
dxd(6x3)×y+6x3×dxd(y)
Evaluate the derivative
18x2y+6x3×dxd(y)
Evaluate the derivative
18x2y+6x3dxdy
18x2y+6x3dxdy+dxd(−y2)
Evaluate the derivative
More Steps

Evaluate
dxd(−y2)
Use differentiation rules
dyd(−y2)×dxdy
Evaluate the derivative
−2ydxdy
18x2y+6x3dxdy−2ydxdy
18x2y+6x3dxdy−2ydxdy=dxd(0)
Calculate the derivative
18x2y+6x3dxdy−2ydxdy=0
Collect like terms by calculating the sum or difference of their coefficients
18x2y+(6x3−2y)dxdy=0
Move the constant to the right side
(6x3−2y)dxdy=0−18x2y
Removing 0 doesn't change the value,so remove it from the expression
(6x3−2y)dxdy=−18x2y
Divide both sides
6x3−2y(6x3−2y)dxdy=6x3−2y−18x2y
Divide the numbers
dxdy=6x3−2y−18x2y
Solution
More Steps

Evaluate
6x3−2y−18x2y
Rewrite the expression
2(3x3−y)−18x2y
Cancel out the common factor 2
3x3−y−9x2y
Use b−a=−ba=−ba to rewrite the fraction
−3x3−y9x2y
dxdy=−3x3−y9x2y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=27x9−27x6y+9x3y2−y3324x7y+27y2x4−18y3x
Calculate
6x2xy−y2=0
Simplify the expression
6x3y−y2=0
Take the derivative of both sides
dxd(6x3y−y2)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(6x3y−y2)
Use differentiation rules
dxd(6x3y)+dxd(−y2)
Evaluate the derivative
More Steps

Evaluate
dxd(6x3y)
Use differentiation rules
dxd(6x3)×y+6x3×dxd(y)
Evaluate the derivative
18x2y+6x3×dxd(y)
Evaluate the derivative
18x2y+6x3dxdy
18x2y+6x3dxdy+dxd(−y2)
Evaluate the derivative
More Steps

Evaluate
dxd(−y2)
Use differentiation rules
dyd(−y2)×dxdy
Evaluate the derivative
−2ydxdy
18x2y+6x3dxdy−2ydxdy
18x2y+6x3dxdy−2ydxdy=dxd(0)
Calculate the derivative
18x2y+6x3dxdy−2ydxdy=0
Collect like terms by calculating the sum or difference of their coefficients
18x2y+(6x3−2y)dxdy=0
Move the constant to the right side
(6x3−2y)dxdy=0−18x2y
Removing 0 doesn't change the value,so remove it from the expression
(6x3−2y)dxdy=−18x2y
Divide both sides
6x3−2y(6x3−2y)dxdy=6x3−2y−18x2y
Divide the numbers
dxdy=6x3−2y−18x2y
Divide the numbers
More Steps

Evaluate
6x3−2y−18x2y
Rewrite the expression
2(3x3−y)−18x2y
Cancel out the common factor 2
3x3−y−9x2y
Use b−a=−ba=−ba to rewrite the fraction
−3x3−y9x2y
dxdy=−3x3−y9x2y
Take the derivative of both sides
dxd(dxdy)=dxd(−3x3−y9x2y)
Calculate the derivative
dx2d2y=dxd(−3x3−y9x2y)
Use differentiation rules
dx2d2y=−(3x3−y)2dxd(9x2y)×(3x3−y)−9x2y×dxd(3x3−y)
Calculate the derivative
More Steps

Evaluate
dxd(9x2y)
Use differentiation rules
dxd(9)×x2y+9×dxd(x2)×y+9x2×dxd(y)
Use dxdxn=nxn−1 to find derivative
dxd(9)×x2y+18xy+9x2×dxd(y)
Evaluate the derivative
dxd(9)×x2y+18xy+9x2dxdy
Calculate
18xy+9x2dxdy
dx2d2y=−(3x3−y)2(18xy+9x2dxdy)(3x3−y)−9x2y×dxd(3x3−y)
Calculate the derivative
More Steps

Evaluate
dxd(3x3−y)
Use differentiation rules
dxd(3x3)+dxd(−y)
Evaluate the derivative
9x2+dxd(−y)
Evaluate the derivative
9x2−dxdy
dx2d2y=−(3x3−y)2(18xy+9x2dxdy)(3x3−y)−9x2y(9x2−dxdy)
Calculate
More Steps

Evaluate
(18xy+9x2dxdy)(3x3−y)
Use the the distributive property to expand the expression
18xy(3x3−y)+9x2dxdy×(3x3−y)
Multiply the terms
54x4y−18xy2+9x2dxdy×(3x3−y)
Multiply the terms
54x4y−18xy2+27x5dxdy−9x2ydxdy
dx2d2y=−(3x3−y)254x4y−18xy2+27x5dxdy−9x2ydxdy−9x2y(9x2−dxdy)
Calculate
More Steps

Evaluate
9x2y(9x2−dxdy)
Use the the distributive property to expand the expression
9x2y×9x2+9x2y(−dxdy)
Multiply the terms
81x4y+9x2y(−dxdy)
Rewrite the expression
81x4y−9x2ydxdy
dx2d2y=−(3x3−y)254x4y−18xy2+27x5dxdy−9x2ydxdy−(81x4y−9x2ydxdy)
Calculate
More Steps

Calculate
54x4y−18xy2+27x5dxdy−9x2ydxdy−(81x4y−9x2ydxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
54x4y−18xy2+27x5dxdy−9x2ydxdy−81x4y+9x2ydxdy
Subtract the terms
−27x4y−18xy2+27x5dxdy−9x2ydxdy+9x2ydxdy
The sum of two opposites equals 0
−27x4y−18xy2+27x5dxdy+0
Remove 0
−27x4y−18xy2+27x5dxdy
dx2d2y=−(3x3−y)2−27x4y−18xy2+27x5dxdy
Use equation dxdy=−3x3−y9x2y to substitute
dx2d2y=−(3x3−y)2−27x4y−18xy2+27x5(−3x3−y9x2y)
Solution
More Steps

Calculate
−(3x3−y)2−27x4y−18xy2+27x5(−3x3−y9x2y)
Multiply
More Steps

Multiply the terms
27x5(−3x3−y9x2y)
Any expression multiplied by 1 remains the same
−27x5×3x3−y9x2y
Multiply the terms
−3x3−y243x7y
−(3x3−y)2−27x4y−18xy2−3x3−y243x7y
Subtract the terms
More Steps

Evaluate
−27x4y−18xy2−3x3−y243x7y
Reduce fractions to a common denominator
−3x3−y27x4y(3x3−y)−3x3−y18xy2(3x3−y)−3x3−y243x7y
Write all numerators above the common denominator
3x3−y−27x4y(3x3−y)−18xy2(3x3−y)−243x7y
Multiply the terms
3x3−y−(81x7y−27y2x4)−18xy2(3x3−y)−243x7y
Multiply the terms
3x3−y−(81x7y−27y2x4)−(54x4y2−18y3x)−243x7y
Subtract the terms
3x3−y−324x7y−27y2x4+18y3x
−(3x3−y)23x3−y−324x7y−27y2x4+18y3x
Divide the terms
More Steps

Evaluate
(3x3−y)23x3−y−324x7y−27y2x4+18y3x
Multiply by the reciprocal
3x3−y−324x7y−27y2x4+18y3x×(3x3−y)21
Multiply the terms
(3x3−y)(3x3−y)2−324x7y−27y2x4+18y3x
Multiply the terms
(3x3−y)3−324x7y−27y2x4+18y3x
−(3x3−y)3−324x7y−27y2x4+18y3x
Use b−a=−ba=−ba to rewrite the fraction
(3x3−y)3324x7y+27y2x4−18y3x
Expand the expression
More Steps

Evaluate
(3x3−y)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
(3x3)3−3(3x3)2y+3×3x3y2−y3
Calculate
27x9−27x6y+9x3y2−y3
27x9−27x6y+9x3y2−y3324x7y+27y2x4−18y3x
dx2d2y=27x9−27x6y+9x3y2−y3324x7y+27y2x4−18y3x
Show Solution
