Question
Factor the expression
2(3x2−4x−24)
Evaluate
6x2−8x−48
Solution
2(3x2−4x−24)
Show Solution

Find the roots
x1=32−219,x2=32+219
Alternative Form
x1≈−2.239266,x2≈3.572599
Evaluate
6x2−8x−48
To find the roots of the expression,set the expression equal to 0
6x2−8x−48=0
Substitute a=6,b=−8 and c=−48 into the quadratic formula x=2a−b±b2−4ac
x=2×68±(−8)2−4×6(−48)
Simplify the expression
x=128±(−8)2−4×6(−48)
Simplify the expression
More Steps

Evaluate
(−8)2−4×6(−48)
Multiply
More Steps

Multiply the terms
4×6(−48)
Rewrite the expression
−4×6×48
Multiply the terms
−1152
(−8)2−(−1152)
Rewrite the expression
82−(−1152)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+1152
Evaluate the power
64+1152
Add the numbers
1216
x=128±1216
Simplify the radical expression
More Steps

Evaluate
1216
Write the expression as a product where the root of one of the factors can be evaluated
64×19
Write the number in exponential form with the base of 8
82×19
The root of a product is equal to the product of the roots of each factor
82×19
Reduce the index of the radical and exponent with 2
819
x=128±819
Separate the equation into 2 possible cases
x=128+819x=128−819
Simplify the expression
More Steps

Evaluate
x=128+819
Divide the terms
More Steps

Evaluate
128+819
Rewrite the expression
124(2+219)
Cancel out the common factor 4
32+219
x=32+219
x=32+219x=128−819
Simplify the expression
More Steps

Evaluate
x=128−819
Divide the terms
More Steps

Evaluate
128−819
Rewrite the expression
124(2−219)
Cancel out the common factor 4
32−219
x=32−219
x=32+219x=32−219
Solution
x1=32−219,x2=32+219
Alternative Form
x1≈−2.239266,x2≈3.572599
Show Solution
