Question
Solve the equation(The real numbers system)
x1≈−1.073336,x2≈1.108343
Evaluate
6x4×2−16x=17−15x
Evaluate
12x4−16x=17−15x
Move the expression to the left side
12x4−16x−(17−15x)=0
Subtract the terms
More Steps

Evaluate
12x4−16x−(17−15x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
12x4−16x−17+15x
Add the terms
More Steps

Evaluate
−16x+15x
Collect like terms by calculating the sum or difference of their coefficients
(−16+15)x
Add the numbers
−x
12x4−x−17
12x4−x−17=0
Solution
x1≈−1.073336,x2≈1.108343
Show Solution

Solve the equation(The complex numbers system)
x1≈−1.073336,x2≈−0.017503−1.091121i,x3≈−0.017503+1.091121i,x4≈1.108343
Evaluate
6x4×2−16x=17−15x
Multiply the terms
12x4−16x=17−15x
Move the expression to the left side
12x4−16x−(17−15x)=0
Subtract the terms
More Steps

Evaluate
12x4−16x−(17−15x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
12x4−16x−17+15x
Add the terms
More Steps

Evaluate
−16x+15x
Collect like terms by calculating the sum or difference of their coefficients
(−16+15)x
Add the numbers
−x
12x4−x−17
12x4−x−17=0
Calculate
x≈1.108343x≈−0.017503+1.091121ix≈−0.017503−1.091121ix≈−1.073336
Solution
x1≈−1.073336,x2≈−0.017503−1.091121i,x3≈−0.017503+1.091121i,x4≈1.108343
Show Solution
