Question
Simplify the expression
6x2−18x−9x5+63x4−54x3
Evaluate
6x(x−3)−3(x2−6x)×3x2(x−1)
Multiply
More Steps

Multiply the terms
3(x2−6x)×3x2(x−1)
Multiply the terms
9(x2−6x)x2(x−1)
Multiply the terms
9x2(x2−6x)(x−1)
6x(x−3)−9x2(x2−6x)(x−1)
Expand the expression
More Steps

Calculate
6x(x−3)
Apply the distributive property
6x×x−6x×3
Multiply the terms
6x2−6x×3
Multiply the numbers
6x2−18x
6x2−18x−9x2(x2−6x)(x−1)
Solution
More Steps

Calculate
−9x2(x2−6x)(x−1)
Simplify
More Steps

Evaluate
−9x2(x2−6x)
Apply the distributive property
−9x2×x2−(−9x2×6x)
Multiply the terms
−9x4−(−9x2×6x)
Multiply the terms
−9x4−(−54x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9x4+54x3
(−9x4+54x3)(x−1)
Apply the distributive property
−9x4×x−(−9x4×1)+54x3×x−54x3×1
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
−9x5−(−9x4×1)+54x3×x−54x3×1
Any expression multiplied by 1 remains the same
−9x5−(−9x4)+54x3×x−54x3×1
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
−9x5−(−9x4)+54x4−54x3×1
Any expression multiplied by 1 remains the same
−9x5−(−9x4)+54x4−54x3
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9x5+9x4+54x4−54x3
Add the terms
More Steps

Evaluate
9x4+54x4
Collect like terms by calculating the sum or difference of their coefficients
(9+54)x4
Add the numbers
63x4
−9x5+63x4−54x3
6x2−18x−9x5+63x4−54x3
Show Solution

Factor the expression
3x(2x−6−3x4+21x3−18x2)
Evaluate
6x(x−3)−3(x2−6x)×3x2(x−1)
Multiply
More Steps

Evaluate
3(x2−6x)×3x2(x−1)
Multiply the terms
9(x2−6x)x2(x−1)
Multiply the terms
9x2(x2−6x)(x−1)
6x(x−3)−9x2(x2−6x)(x−1)
Rewrite the expression
3x×2(x−3)−3x×3x(x2−6x)(x−1)
Factor out 3x from the expression
3x(2(x−3)−3x(x2−6x)(x−1))
Solution
3x(2x−6−3x4+21x3−18x2)
Show Solution

Find the roots
x1=0,x2≈1.180576,x3≈6.011086
Evaluate
6x(x−3)−3(x2−6x)×3x2(x−1)
To find the roots of the expression,set the expression equal to 0
6x(x−3)−3(x2−6x)×3x2(x−1)=0
Multiply
More Steps

Multiply the terms
3(x2−6x)×3x2(x−1)
Multiply the terms
9(x2−6x)x2(x−1)
Multiply the terms
9x2(x2−6x)(x−1)
6x(x−3)−9x2(x2−6x)(x−1)=0
Calculate
More Steps

Evaluate
6x(x−3)−9x2(x2−6x)(x−1)
Expand the expression
More Steps

Calculate
6x(x−3)
Apply the distributive property
6x×x−6x×3
Multiply the terms
6x2−6x×3
Multiply the numbers
6x2−18x
6x2−18x−9x2(x2−6x)(x−1)
Expand the expression
More Steps

Calculate
−9x2(x2−6x)(x−1)
Simplify
(−9x4+54x3)(x−1)
Apply the distributive property
−9x4×x−(−9x4×1)+54x3×x−54x3×1
Multiply the terms
−9x5−(−9x4×1)+54x3×x−54x3×1
Any expression multiplied by 1 remains the same
−9x5−(−9x4)+54x3×x−54x3×1
Multiply the terms
−9x5−(−9x4)+54x4−54x3×1
Any expression multiplied by 1 remains the same
−9x5−(−9x4)+54x4−54x3
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9x5+9x4+54x4−54x3
Add the terms
−9x5+63x4−54x3
6x2−18x−9x5+63x4−54x3
6x2−18x−9x5+63x4−54x3=0
Factor the expression
3x(2x−6−3x4+21x3−18x2)=0
Divide both sides
x(2x−6−3x4+21x3−18x2)=0
Separate the equation into 2 possible cases
x=02x−6−3x4+21x3−18x2=0
Solve the equation
x=0x≈1.180576x≈6.011086
Solution
x1=0,x2≈1.180576,x3≈6.011086
Show Solution
