Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
6x−123x×8x−6=180
Multiply
More Steps

Evaluate
−123x×8x
Multiply the terms
−984x×x
Multiply the terms
−984x2
6x−984x2−6=180
Move the expression to the left side
6x−984x2−186=0
Rewrite in standard form
−984x2+6x−186=0
Multiply both sides
984x2−6x+186=0
Substitute a=984,b=−6 and c=186 into the quadratic formula x=2a−b±b2−4ac
x=2×9846±(−6)2−4×984×186
Simplify the expression
x=19686±(−6)2−4×984×186
Simplify the expression
More Steps

Evaluate
(−6)2−4×984×186
Multiply the terms
More Steps

Multiply the terms
4×984×186
Multiply the terms
3936×186
Multiply the numbers
732096
(−6)2−732096
Rewrite the expression
62−732096
Evaluate the power
36−732096
Subtract the numbers
−732060
x=19686±−732060
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=3281−3287415i,x2=3281+3287415i
Alternative Form
x1≈0.0030˙4878˙−0.434759i,x2≈0.0030˙4878˙+0.434759i
Evaluate
6x−123x×8x−6=180
Multiply
More Steps

Evaluate
−123x×8x
Multiply the terms
−984x×x
Multiply the terms
−984x2
6x−984x2−6=180
Move the expression to the left side
6x−984x2−186=0
Rewrite in standard form
−984x2+6x−186=0
Multiply both sides
984x2−6x+186=0
Substitute a=984,b=−6 and c=186 into the quadratic formula x=2a−b±b2−4ac
x=2×9846±(−6)2−4×984×186
Simplify the expression
x=19686±(−6)2−4×984×186
Simplify the expression
More Steps

Evaluate
(−6)2−4×984×186
Multiply the terms
More Steps

Multiply the terms
4×984×186
Multiply the terms
3936×186
Multiply the numbers
732096
(−6)2−732096
Rewrite the expression
62−732096
Evaluate the power
36−732096
Subtract the numbers
−732060
x=19686±−732060
Simplify the radical expression
More Steps

Evaluate
−732060
Evaluate the power
732060×−1
Evaluate the power
732060×i
Evaluate the power
More Steps

Evaluate
732060
Write the expression as a product where the root of one of the factors can be evaluated
1764×415
Write the number in exponential form with the base of 42
422×415
The root of a product is equal to the product of the roots of each factor
422×415
Reduce the index of the radical and exponent with 2
42415
42415×i
x=19686±42415×i
Separate the equation into 2 possible cases
x=19686+42415×ix=19686−42415×i
Simplify the expression
More Steps

Evaluate
x=19686+42415×i
Divide the terms
More Steps

Evaluate
19686+42415×i
Rewrite the expression
19686(1+7415×i)
Cancel out the common factor 6
3281+7415×i
Simplify
3281+3287415i
x=3281+3287415i
x=3281+3287415ix=19686−42415×i
Simplify the expression
More Steps

Evaluate
x=19686−42415×i
Divide the terms
More Steps

Evaluate
19686−42415×i
Rewrite the expression
19686(1−7415×i)
Cancel out the common factor 6
3281−7415×i
Simplify
3281−3287415i
x=3281−3287415i
x=3281+3287415ix=3281−3287415i
Solution
x1=3281−3287415i,x2=3281+3287415i
Alternative Form
x1≈0.0030˙4878˙−0.434759i,x2≈0.0030˙4878˙+0.434759i
Show Solution
