Question
Solve the equation
Solve for x
Solve for y
x=3+9−2y5x=3−9−2y5
Evaluate
6x−2y5=x2
Move the expression to the left side
6x−2y5−x2=0
Rewrite in standard form
−x2+6x−2y5=0
Multiply both sides
x2−6x+2y5=0
Substitute a=1,b=−6 and c=2y5 into the quadratic formula x=2a−b±b2−4ac
x=26±(−6)2−4×2y5
Simplify the expression
More Steps

Evaluate
(−6)2−4×2y5
Multiply the terms
(−6)2−8y5
Rewrite the expression
62−8y5
Evaluate the power
36−8y5
x=26±36−8y5
Simplify the radical expression
More Steps

Evaluate
36−8y5
Factor the expression
4(9−2y5)
The root of a product is equal to the product of the roots of each factor
4×9−2y5
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
29−2y5
x=26±29−2y5
Separate the equation into 2 possible cases
x=26+29−2y5x=26−29−2y5
Simplify the expression
More Steps

Evaluate
x=26+29−2y5
Divide the terms
More Steps

Evaluate
26+29−2y5
Rewrite the expression
22(3+9−2y5)
Reduce the fraction
3+9−2y5
x=3+9−2y5
x=3+9−2y5x=26−29−2y5
Solution
More Steps

Evaluate
x=26−29−2y5
Divide the terms
More Steps

Evaluate
26−29−2y5
Rewrite the expression
22(3−9−2y5)
Reduce the fraction
3−9−2y5
x=3−9−2y5
x=3+9−2y5x=3−9−2y5
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
6x−2y5=x2
To test if the graph of 6x−2y5=x2 is symmetry with respect to the origin,substitute -x for x and -y for y
6(−x)−2(−y)5=(−x)2
Evaluate
More Steps

Evaluate
6(−x)−2(−y)5
Multiply the numbers
−6x−2(−y)5
Multiply the terms
More Steps

Evaluate
2(−y)5
Rewrite the expression
2(−y5)
Multiply the numbers
−2y5
−6x−(−2y5)
Rewrite the expression
−6x+2y5
−6x+2y5=(−x)2
Evaluate
−6x+2y5=x2
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=5y4−x+3
Calculate
6x−2y5=x2
Take the derivative of both sides
dxd(6x−2y5)=dxd(x2)
Calculate the derivative
More Steps

Evaluate
dxd(6x−2y5)
Use differentiation rules
dxd(6x)+dxd(−2y5)
Evaluate the derivative
More Steps

Evaluate
dxd(6x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
6×dxd(x)
Use dxdxn=nxn−1 to find derivative
6×1
Any expression multiplied by 1 remains the same
6
6+dxd(−2y5)
Evaluate the derivative
More Steps

Evaluate
dxd(−2y5)
Use differentiation rules
dyd(−2y5)×dxdy
Evaluate the derivative
−10y4dxdy
6−10y4dxdy
6−10y4dxdy=dxd(x2)
Use dxdxn=nxn−1 to find derivative
6−10y4dxdy=2x
Move the constant to the right-hand side and change its sign
−10y4dxdy=2x−6
Divide both sides
−10y4−10y4dxdy=−10y42x−6
Divide the numbers
dxdy=−10y42x−6
Solution
More Steps

Evaluate
−10y42x−6
Rewrite the expression
−10y42(x−3)
Cancel out the common factor 2
−5y4x−3
Use b−a=−ba=−ba to rewrite the fraction
−5y4x−3
Rewrite the expression
5y4−x+3
dxdy=5y4−x+3
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=25y9−5y5−4x2+24x−36
Calculate
6x−2y5=x2
Take the derivative of both sides
dxd(6x−2y5)=dxd(x2)
Calculate the derivative
More Steps

Evaluate
dxd(6x−2y5)
Use differentiation rules
dxd(6x)+dxd(−2y5)
Evaluate the derivative
More Steps

Evaluate
dxd(6x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
6×dxd(x)
Use dxdxn=nxn−1 to find derivative
6×1
Any expression multiplied by 1 remains the same
6
6+dxd(−2y5)
Evaluate the derivative
More Steps

Evaluate
dxd(−2y5)
Use differentiation rules
dyd(−2y5)×dxdy
Evaluate the derivative
−10y4dxdy
6−10y4dxdy
6−10y4dxdy=dxd(x2)
Use dxdxn=nxn−1 to find derivative
6−10y4dxdy=2x
Move the constant to the right-hand side and change its sign
−10y4dxdy=2x−6
Divide both sides
−10y4−10y4dxdy=−10y42x−6
Divide the numbers
dxdy=−10y42x−6
Divide the numbers
More Steps

Evaluate
−10y42x−6
Rewrite the expression
−10y42(x−3)
Cancel out the common factor 2
−5y4x−3
Use b−a=−ba=−ba to rewrite the fraction
−5y4x−3
Rewrite the expression
5y4−x+3
dxdy=5y4−x+3
Take the derivative of both sides
dxd(dxdy)=dxd(5y4−x+3)
Calculate the derivative
dx2d2y=dxd(5y4−x+3)
Use differentiation rules
dx2d2y=(5y4)2dxd(−x+3)×5y4−(−x+3)×dxd(5y4)
Calculate the derivative
More Steps

Evaluate
dxd(−x+3)
Use differentiation rules
dxd(−x)+dxd(3)
Evaluate the derivative
−1+dxd(3)
Use dxd(c)=0 to find derivative
−1+0
Evaluate
−1
dx2d2y=(5y4)2−5y4−(−x+3)×dxd(5y4)
Calculate the derivative
More Steps

Evaluate
dxd(5y4)
Simplify
5×dxd(y4)
Rewrite the expression
5×4y3dxdy
Multiply the numbers
20y3dxdy
dx2d2y=(5y4)2−5y4−(−x+3)×20y3dxdy
Calculate
More Steps

Evaluate
(−x+3)×20y3dxdy
Apply the distributive property
−x×20y3dxdy+3×20y3dxdy
Multiply the numbers
−20xy3dxdy+3×20y3dxdy
Multiply the numbers
−20xy3dxdy+60y3dxdy
dx2d2y=(5y4)2−5y4−(−20xy3dxdy+60y3dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
dx2d2y=(5y4)2−5y4+20xy3dxdy−60y3dxdy
Calculate
More Steps

Evaluate
(5y4)2
Evaluate the power
52(y4)2
Evaluate the power
25(y4)2
Evaluate the power
25y8
dx2d2y=25y8−5y4+20xy3dxdy−60y3dxdy
Calculate
dx2d2y=5y5−y+4xdxdy−12dxdy
Use equation dxdy=5y4−x+3 to substitute
dx2d2y=5y5−y+4x×5y4−x+3−12×5y4−x+3
Solution
More Steps

Calculate
5y5−y+4x×5y4−x+3−12×5y4−x+3
Multiply the terms
5y5−y+5y44x(−x+3)−12×5y4−x+3
Multiply the terms
5y5−y+5y44x(−x+3)−5y412(−x+3)
Calculate the sum or difference
More Steps

Evaluate
−y+5y44x(−x+3)−5y412(−x+3)
Reduce fractions to a common denominator
−5y4y×5y4+5y44x(−x+3)−5y412(−x+3)
Write all numerators above the common denominator
5y4−y×5y4+4x(−x+3)−12(−x+3)
Multiply the terms
5y4−5y5+4x(−x+3)−12(−x+3)
Multiply the terms
5y4−5y5−4x2+12x−12(−x+3)
Multiply the terms
5y4−5y5−4x2+12x−(−12x+36)
Calculate the sum or difference
5y4−5y5−4x2+24x−36
5y55y4−5y5−4x2+24x−36
Multiply by the reciprocal
5y4−5y5−4x2+24x−36×5y51
Multiply the terms
5y4×5y5−5y5−4x2+24x−36
Multiply the terms
More Steps

Evaluate
5y4×5y5
Multiply the numbers
25y4×y5
Multiply the terms
25y9
25y9−5y5−4x2+24x−36
dx2d2y=25y9−5y5−4x2+24x−36
Show Solution
