Question
Solve the equation
Solve for x
Solve for y
x=y34
Evaluate
6y3x=24
Divide both sides
6y36y3x=6y324
Divide the numbers
x=6y324
Solution
x=y34
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
6y3x=24
To test if the graph of 6y3x=24 is symmetry with respect to the origin,substitute -x for x and -y for y
6(−y)3(−x)=24
Evaluate
More Steps

Evaluate
6(−y)3(−x)
Any expression multiplied by 1 remains the same
−6(−y)3x
Multiply the terms
More Steps

Evaluate
6(−y)3
Rewrite the expression
6(−y3)
Multiply the numbers
−6y3
−(−6y3x)
Multiply the first two terms
6y3x
6y3x=24
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=44csc3(θ)sec(θ)r=−44csc3(θ)sec(θ)
Evaluate
6y3x=24
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
6(sin(θ)×r)3cos(θ)×r=24
Factor the expression
6sin3(θ)cos(θ)×r4=24
Divide the terms
r4=sin3(θ)cos(θ)4
Simplify the expression
r4=4csc3(θ)sec(θ)
Evaluate the power
r=±44csc3(θ)sec(θ)
Solution
r=44csc3(θ)sec(θ)r=−44csc3(θ)sec(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−3xy
Calculate
6y3x=24
Take the derivative of both sides
dxd(6y3x)=dxd(24)
Calculate the derivative
More Steps

Evaluate
dxd(6y3x)
Use differentiation rules
dxd(6x)×y3+6x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(6x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
6×dxd(x)
Use dxdxn=nxn−1 to find derivative
6×1
Any expression multiplied by 1 remains the same
6
6y3+6x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
6y3+18xy2dxdy
6y3+18xy2dxdy=dxd(24)
Calculate the derivative
6y3+18xy2dxdy=0
Move the expression to the right-hand side and change its sign
18xy2dxdy=0−6y3
Removing 0 doesn't change the value,so remove it from the expression
18xy2dxdy=−6y3
Divide both sides
18xy218xy2dxdy=18xy2−6y3
Divide the numbers
dxdy=18xy2−6y3
Solution
More Steps

Evaluate
18xy2−6y3
Cancel out the common factor 6
3xy2−y3
Reduce the fraction
More Steps

Evaluate
y2y3
Use the product rule aman=an−m to simplify the expression
y3−2
Subtract the terms
y1
Simplify
y
3x−y
Use b−a=−ba=−ba to rewrite the fraction
−3xy
dxdy=−3xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9x24y
Calculate
6y3x=24
Take the derivative of both sides
dxd(6y3x)=dxd(24)
Calculate the derivative
More Steps

Evaluate
dxd(6y3x)
Use differentiation rules
dxd(6x)×y3+6x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(6x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
6×dxd(x)
Use dxdxn=nxn−1 to find derivative
6×1
Any expression multiplied by 1 remains the same
6
6y3+6x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
6y3+18xy2dxdy
6y3+18xy2dxdy=dxd(24)
Calculate the derivative
6y3+18xy2dxdy=0
Move the expression to the right-hand side and change its sign
18xy2dxdy=0−6y3
Removing 0 doesn't change the value,so remove it from the expression
18xy2dxdy=−6y3
Divide both sides
18xy218xy2dxdy=18xy2−6y3
Divide the numbers
dxdy=18xy2−6y3
Divide the numbers
More Steps

Evaluate
18xy2−6y3
Cancel out the common factor 6
3xy2−y3
Reduce the fraction
More Steps

Evaluate
y2y3
Use the product rule aman=an−m to simplify the expression
y3−2
Subtract the terms
y1
Simplify
y
3x−y
Use b−a=−ba=−ba to rewrite the fraction
−3xy
dxdy=−3xy
Take the derivative of both sides
dxd(dxdy)=dxd(−3xy)
Calculate the derivative
dx2d2y=dxd(−3xy)
Use differentiation rules
dx2d2y=−(3x)2dxd(y)×3x−y×dxd(3x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−(3x)2dxdy×3x−y×dxd(3x)
Calculate the derivative
More Steps

Evaluate
dxd(3x)
Simplify
3×dxd(x)
Rewrite the expression
3×1
Any expression multiplied by 1 remains the same
3
dx2d2y=−(3x)2dxdy×3x−y×3
Use the commutative property to reorder the terms
dx2d2y=−(3x)23dxdy×x−y×3
Use the commutative property to reorder the terms
dx2d2y=−(3x)23dxdy×x−3y
Use the commutative property to reorder the terms
dx2d2y=−(3x)23xdxdy−3y
Calculate
More Steps

Evaluate
(3x)2
Evaluate the power
32x2
Evaluate the power
9x2
dx2d2y=−9x23xdxdy−3y
Calculate
dx2d2y=−3x2xdxdy−y
Use equation dxdy=−3xy to substitute
dx2d2y=−3x2x(−3xy)−y
Solution
More Steps

Calculate
−3x2x(−3xy)−y
Multiply the terms
More Steps

Evaluate
x(−3xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×3xy
Cancel out the common factor x
−1×3y
Multiply the terms
−3y
−3x2−3y−y
Subtract the terms
More Steps

Simplify
−3y−y
Reduce fractions to a common denominator
−3y−3y×3
Write all numerators above the common denominator
3−y−y×3
Use the commutative property to reorder the terms
3−y−3y
Subtract the terms
3−4y
Use b−a=−ba=−ba to rewrite the fraction
−34y
−3x2−34y
Divide the terms
More Steps

Evaluate
3x2−34y
Multiply by the reciprocal
−34y×3x21
Multiply the terms
−3×3x24y
Multiply the terms
−9x24y
−(−9x24y)
Calculate
9x24y
dx2d2y=9x24y
Show Solution
