Question
Solve the inequality
x∈(−∞,−1.340278)∪(1.122086,+∞)
Evaluate
7−2(x×1)<3x4
Remove the parentheses
7−2x×1<3x4
Multiply the terms
7−2x<3x4
Move the expression to the left side
7−2x−3x4<0
Rewrite the expression
7−2x−3x4=0
Find the critical values by solving the corresponding equation
x≈−1.340278x≈1.122086
Determine the test intervals using the critical values
x<−1.340278−1.340278<x<1.122086x>1.122086
Choose a value form each interval
x1=−2x2=0x3=2
To determine if x<−1.340278 is the solution to the inequality,test if the chosen value x=−2 satisfies the initial inequality
More Steps

Evaluate
7−2(−2)<3(−2)4
Simplify
More Steps

Evaluate
7−2(−2)
Multiply the numbers
7−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7+4
Add the numbers
11
11<3(−2)4
Multiply the terms
More Steps

Evaluate
3(−2)4
Evaluate the power
3×16
Multiply the numbers
48
11<48
Check the inequality
true
x<−1.340278 is the solutionx2=0x3=2
To determine if −1.340278<x<1.122086 is the solution to the inequality,test if the chosen value x=0 satisfies the initial inequality
More Steps

Evaluate
7−2×0<3×04
Any expression multiplied by 0 equals 0
7−0<3×04
Removing 0 doesn't change the value,so remove it from the expression
7<3×04
Simplify
More Steps

Evaluate
3×04
Calculate
3×0
Any expression multiplied by 0 equals 0
0
7<0
Check the inequality
false
x<−1.340278 is the solution−1.340278<x<1.122086 is not a solutionx3=2
To determine if x>1.122086 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
7−2×2<3×24
Simplify
More Steps

Evaluate
7−2×2
Multiply the numbers
7−4
Subtract the numbers
3
3<3×24
Multiply the terms
More Steps

Evaluate
3×24
Evaluate the power
3×16
Multiply the numbers
48
3<48
Check the inequality
true
x<−1.340278 is the solution−1.340278<x<1.122086 is not a solutionx>1.122086 is the solution
Solution
x∈(−∞,−1.340278)∪(1.122086,+∞)
Show Solution
