Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−2813+449,x2=28−13+449
Alternative Form
x1≈−1.221058,x2≈0.292486
Evaluate
7(2−1x−1)×54x=−3x−1
Simplify
More Steps

Evaluate
7(2−1x−1)×54x
Use b−a=−ba=−ba to rewrite the fraction
7(−21x−1)×54x
Multiply the terms
More Steps

Evaluate
7×54
Multiply the numbers
57×4
Multiply the numbers
528
528(−21x−1)x
Multiply the terms
528x(−21x−1)
528x(−21x−1)=−3x−1
Expand the expression
More Steps

Evaluate
528x(−21x−1)
Apply the distributive property
528x(−21x)−528x×1
Multiply the terms
More Steps

Evaluate
528x(−21x)
Multiply the numbers
−514x×x
Multiply the terms
−514x2
−514x2−528x×1
Any expression multiplied by 1 remains the same
−514x2−528x
−514x2−528x=−3x−1
Move the expression to the left side
−514x2−513x+1=0
Multiply both sides
514x2+513x−1=0
Multiply both sides
5(514x2+513x−1)=5×0
Calculate
14x2+13x−5=0
Substitute a=14,b=13 and c=−5 into the quadratic formula x=2a−b±b2−4ac
x=2×14−13±132−4×14(−5)
Simplify the expression
x=28−13±132−4×14(−5)
Simplify the expression
More Steps

Evaluate
132−4×14(−5)
Multiply
More Steps

Multiply the terms
4×14(−5)
Rewrite the expression
−4×14×5
Multiply the terms
−280
132−(−280)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
132+280
Evaluate the power
169+280
Add the numbers
449
x=28−13±449
Separate the equation into 2 possible cases
x=28−13+449x=28−13−449
Use b−a=−ba=−ba to rewrite the fraction
x=28−13+449x=−2813+449
Solution
x1=−2813+449,x2=28−13+449
Alternative Form
x1≈−1.221058,x2≈0.292486
Show Solution
