Question
Simplify the expression
84x6−126x5
Evaluate
7(2x−3)×2×3x5
Multiply the terms
More Steps

Evaluate
7×2×3
Multiply the terms
14×3
Multiply the numbers
42
42(2x−3)x5
Multiply the terms
42x5(2x−3)
Apply the distributive property
42x5×2x−42x5×3
Multiply the terms
More Steps

Evaluate
42x5×2x
Multiply the numbers
84x5×x
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
84x6
84x6−42x5×3
Solution
84x6−126x5
Show Solution

Find the roots
x1=0,x2=23
Alternative Form
x1=0,x2=1.5
Evaluate
7(2x−3)×2(3x5)
To find the roots of the expression,set the expression equal to 0
7(2x−3)×2(3x5)=0
Multiply the terms
7(2x−3)×2×3x5=0
Multiply
More Steps

Multiply the terms
7(2x−3)×2×3x5
Multiply the terms
More Steps

Evaluate
7×2×3
Multiply the terms
14×3
Multiply the numbers
42
42(2x−3)x5
Multiply the terms
42x5(2x−3)
42x5(2x−3)=0
Elimination the left coefficient
x5(2x−3)=0
Separate the equation into 2 possible cases
x5=02x−3=0
The only way a power can be 0 is when the base equals 0
x=02x−3=0
Solve the equation
More Steps

Evaluate
2x−3=0
Move the constant to the right-hand side and change its sign
2x=0+3
Removing 0 doesn't change the value,so remove it from the expression
2x=3
Divide both sides
22x=23
Divide the numbers
x=23
x=0x=23
Solution
x1=0,x2=23
Alternative Form
x1=0,x2=1.5
Show Solution
