Question
Simplify the expression
224x2+112x
Evaluate
7(4x+2)×8x
Multiply the terms
56(4x+2)x
Multiply the terms
56x(4x+2)
Apply the distributive property
56x×4x+56x×2
Multiply the terms
More Steps

Evaluate
56x×4x
Multiply the numbers
224x×x
Multiply the terms
224x2
224x2+56x×2
Solution
224x2+112x
Show Solution

Factor the expression
112x(2x+1)
Evaluate
7(4x+2)×8x
Multiply the terms
56(4x+2)x
Multiply the terms
56x(4x+2)
Factor the expression
56x×2(2x+1)
Solution
112x(2x+1)
Show Solution

Find the roots
x1=−21,x2=0
Alternative Form
x1=−0.5,x2=0
Evaluate
7(4x+2)×8x
To find the roots of the expression,set the expression equal to 0
7(4x+2)×8x=0
Multiply
More Steps

Multiply the terms
7(4x+2)×8x
Multiply the terms
56(4x+2)x
Multiply the terms
56x(4x+2)
56x(4x+2)=0
Elimination the left coefficient
x(4x+2)=0
Separate the equation into 2 possible cases
x=04x+2=0
Solve the equation
More Steps

Evaluate
4x+2=0
Move the constant to the right-hand side and change its sign
4x=0−2
Removing 0 doesn't change the value,so remove it from the expression
4x=−2
Divide both sides
44x=4−2
Divide the numbers
x=4−2
Divide the numbers
More Steps

Evaluate
4−2
Cancel out the common factor 2
2−1
Use b−a=−ba=−ba to rewrite the fraction
−21
x=−21
x=0x=−21
Solution
x1=−21,x2=0
Alternative Form
x1=−0.5,x2=0
Show Solution
