Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=840843−68889,x2=840843+68889
Alternative Form
x1≈0.691111,x2≈1.316032
Evaluate
7(4x−3)×3(6−5x)=4−24x
Multiply the terms
21(4x−3)(6−5x)=4−24x
Expand the expression
More Steps

Evaluate
21(4x−3)(6−5x)
Multiply the terms
More Steps

Evaluate
21(4x−3)
Apply the distributive property
21×4x−21×3
Multiply the numbers
84x−21×3
Multiply the numbers
84x−63
(84x−63)(6−5x)
Apply the distributive property
84x×6−84x×5x−63×6−(−63×5x)
Multiply the numbers
504x−84x×5x−63×6−(−63×5x)
Multiply the terms
More Steps

Evaluate
84x×5x
Multiply the numbers
420x×x
Multiply the terms
420x2
504x−420x2−63×6−(−63×5x)
Multiply the numbers
504x−420x2−378−(−63×5x)
Multiply the numbers
504x−420x2−378−(−315x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
504x−420x2−378+315x
Add the terms
More Steps

Evaluate
504x+315x
Collect like terms by calculating the sum or difference of their coefficients
(504+315)x
Add the numbers
819x
819x−420x2−378
819x−420x2−378=4−24x
Move the expression to the left side
843x−420x2−382=0
Rewrite in standard form
−420x2+843x−382=0
Multiply both sides
420x2−843x+382=0
Substitute a=420,b=−843 and c=382 into the quadratic formula x=2a−b±b2−4ac
x=2×420843±(−843)2−4×420×382
Simplify the expression
x=840843±(−843)2−4×420×382
Simplify the expression
More Steps

Evaluate
(−843)2−4×420×382
Multiply the terms
More Steps

Multiply the terms
4×420×382
Multiply the terms
1680×382
Multiply the numbers
641760
(−843)2−641760
Calculate
8432−641760
x=840843±8432−641760
Simplify the radical expression
x=840843±68889
Separate the equation into 2 possible cases
x=840843+68889x=840843−68889
Solution
x1=840843−68889,x2=840843+68889
Alternative Form
x1≈0.691111,x2≈1.316032
Show Solution
