Question
Solve the equation
x=−193
Alternative Form
x≈−0.157895
Evaluate
7(7−5x)−9(4−6x)=10
Move the expression to the left side
7(7−5x)−9(4−6x)−10=0
Calculate
More Steps

Evaluate
7(7−5x)−9(4−6x)−10
Expand the expression
More Steps

Calculate
7(7−5x)
Apply the distributive property
7×7−7×5x
Multiply the numbers
49−7×5x
Multiply the numbers
49−35x
49−35x−9(4−6x)−10
Expand the expression
More Steps

Calculate
−9(4−6x)
Apply the distributive property
−9×4−(−9×6x)
Multiply the numbers
−36−(−9×6x)
Multiply the numbers
−36−(−54x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−36+54x
49−35x−36+54x−10
Subtract the numbers
3−35x+54x
Add the terms
More Steps

Evaluate
−35x+54x
Collect like terms by calculating the sum or difference of their coefficients
(−35+54)x
Add the numbers
19x
3+19x
3+19x=0
Move the constant to the right-hand side and change its sign
19x=0−3
Removing 0 doesn't change the value,so remove it from the expression
19x=−3
Divide both sides
1919x=19−3
Divide the numbers
x=19−3
Solution
x=−193
Alternative Form
x≈−0.157895
Show Solution

Rewrite the equation
19x=−3
Evaluate
7(7−5x)−9(4−6x)=10
Evaluate
More Steps

Evaluate
7(7−5x)−9(4−6x)
Expand the expression
More Steps

Calculate
7(7−5x)
Apply the distributive property
7×7−7×5x
Multiply the numbers
49−7×5x
Multiply the numbers
49−35x
49−35x−9(4−6x)
Expand the expression
More Steps

Calculate
−9(4−6x)
Apply the distributive property
−9×4−(−9×6x)
Multiply the numbers
−36−(−9×6x)
Multiply the numbers
−36−(−54x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−36+54x
49−35x−36+54x
Subtract the numbers
13−35x+54x
Add the terms
More Steps

Evaluate
−35x+54x
Collect like terms by calculating the sum or difference of their coefficients
(−35+54)x
Add the numbers
19x
13+19x
13+19x=10
Solution
19x=−3
Show Solution
