Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=42147−1113,x2=42147+1113
Alternative Form
x1≈2.705675,x2≈4.294325
Evaluate
7(x−3)×3(4−x)=−8
Multiply the terms
21(x−3)(4−x)=−8
Expand the expression
More Steps

Evaluate
21(x−3)(4−x)
Multiply the terms
More Steps

Evaluate
21(x−3)
Apply the distributive property
21x−21×3
Multiply the numbers
21x−63
(21x−63)(4−x)
Apply the distributive property
21x×4−21x×x−63×4−(−63x)
Multiply the numbers
84x−21x×x−63×4−(−63x)
Multiply the terms
84x−21x2−63×4−(−63x)
Multiply the numbers
84x−21x2−252−(−63x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
84x−21x2−252+63x
Add the terms
More Steps

Evaluate
84x+63x
Collect like terms by calculating the sum or difference of their coefficients
(84+63)x
Add the numbers
147x
147x−21x2−252
147x−21x2−252=−8
Move the expression to the left side
147x−21x2−244=0
Rewrite in standard form
−21x2+147x−244=0
Multiply both sides
21x2−147x+244=0
Substitute a=21,b=−147 and c=244 into the quadratic formula x=2a−b±b2−4ac
x=2×21147±(−147)2−4×21×244
Simplify the expression
x=42147±(−147)2−4×21×244
Simplify the expression
More Steps

Evaluate
(−147)2−4×21×244
Multiply the terms
More Steps

Multiply the terms
4×21×244
Multiply the terms
84×244
Multiply the numbers
20496
(−147)2−20496
Rewrite the expression
1472−20496
Evaluate the power
21609−20496
Subtract the numbers
1113
x=42147±1113
Separate the equation into 2 possible cases
x=42147+1113x=42147−1113
Solution
x1=42147−1113,x2=42147+1113
Alternative Form
x1≈2.705675,x2≈4.294325
Show Solution
