Question
Simplify the expression
6999−A−A2
Evaluate
7000−1×A−1−A2
Multiply the terms
7000−A−1−A2
Solution
6999−A−A2
Show Solution

Find the roots
A1=−21+27997,A2=2−1+27997
Alternative Form
A1≈−84.16152,A2≈83.16152
Evaluate
7000−1×A−1−A2
To find the roots of the expression,set the expression equal to 0
7000−1×A−1−A2=0
Any expression multiplied by 1 remains the same
7000−A−1−A2=0
Subtract the numbers
6999−A−A2=0
Rewrite in standard form
−A2−A+6999=0
Multiply both sides
A2+A−6999=0
Substitute a=1,b=1 and c=−6999 into the quadratic formula A=2a−b±b2−4ac
A=2−1±12−4(−6999)
Simplify the expression
More Steps

Evaluate
12−4(−6999)
1 raised to any power equals to 1
1−4(−6999)
Multiply the numbers
More Steps

Evaluate
4(−6999)
Multiplying or dividing an odd number of negative terms equals a negative
−4×6999
Multiply the numbers
−27996
1−(−27996)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+27996
Add the numbers
27997
A=2−1±27997
Separate the equation into 2 possible cases
A=2−1+27997A=2−1−27997
Use b−a=−ba=−ba to rewrite the fraction
A=2−1+27997A=−21+27997
Solution
A1=−21+27997,A2=2−1+27997
Alternative Form
A1≈−84.16152,A2≈83.16152
Show Solution
