Question
Find the roots
x1=7156−81185,x2=7156+81185
Alternative Form
x1≈−3.090009,x2≈4.667474
Evaluate
71x2−112x−1024
To find the roots of the expression,set the expression equal to 0
71x2−112x−1024=0
Substitute a=71,b=−112 and c=−1024 into the quadratic formula x=2a−b±b2−4ac
x=2×71112±(−112)2−4×71(−1024)
Simplify the expression
x=142112±(−112)2−4×71(−1024)
Simplify the expression
More Steps

Evaluate
(−112)2−4×71(−1024)
Multiply
More Steps

Multiply the terms
4×71(−1024)
Rewrite the expression
−4×71×1024
Multiply the terms
−290816
(−112)2−(−290816)
Rewrite the expression
1122−(−290816)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1122+290816
Evaluate the power
12544+290816
Add the numbers
303360
x=142112±303360
Simplify the radical expression
More Steps

Evaluate
303360
Write the expression as a product where the root of one of the factors can be evaluated
256×1185
Write the number in exponential form with the base of 16
162×1185
The root of a product is equal to the product of the roots of each factor
162×1185
Reduce the index of the radical and exponent with 2
161185
x=142112±161185
Separate the equation into 2 possible cases
x=142112+161185x=142112−161185
Simplify the expression
More Steps

Evaluate
x=142112+161185
Divide the terms
More Steps

Evaluate
142112+161185
Rewrite the expression
1422(56+81185)
Cancel out the common factor 2
7156+81185
x=7156+81185
x=7156+81185x=142112−161185
Simplify the expression
More Steps

Evaluate
x=142112−161185
Divide the terms
More Steps

Evaluate
142112−161185
Rewrite the expression
1422(56−81185)
Cancel out the common factor 2
7156−81185
x=7156−81185
x=7156+81185x=7156−81185
Solution
x1=7156−81185,x2=7156+81185
Alternative Form
x1≈−3.090009,x2≈4.667474
Show Solution
