Question
Simplify the expression
99s372765s3−7028
Evaluate
735−997028÷s3
Divide the terms
More Steps

Evaluate
997028÷s3
Multiply by the reciprocal
997028×s31
Multiply the terms
99s37028
735−99s37028
Reduce fractions to a common denominator
99s3735×99s3−99s37028
Write all numerators above the common denominator
99s3735×99s3−7028
Solution
99s372765s3−7028
Show Solution

Find the excluded values
s=0
Evaluate
735−997028÷s3
To find the excluded values,set the denominators equal to 0
s3=0
Solution
s=0
Show Solution

Find the roots
s=115531004×3852
Alternative Form
s≈0.458814
Evaluate
735−997028÷s3
To find the roots of the expression,set the expression equal to 0
735−997028÷s3=0
The only way a power can not be 0 is when the base not equals 0
735−997028÷s3=0,s=0
Calculate
735−997028÷s3=0
Divide the terms
More Steps

Evaluate
997028÷s3
Multiply by the reciprocal
997028×s31
Multiply the terms
99s37028
735−99s37028=0
Subtract the terms
More Steps

Simplify
735−99s37028
Reduce fractions to a common denominator
99s3735×99s3−99s37028
Write all numerators above the common denominator
99s3735×99s3−7028
Multiply the terms
99s372765s3−7028
99s372765s3−7028=0
Cross multiply
72765s3−7028=99s3×0
Simplify the equation
72765s3−7028=0
Move the constant to the right side
72765s3=7028
Divide both sides
7276572765s3=727657028
Divide the numbers
s3=727657028
Cancel out the common factor 7
s3=103951004
Take the 3-th root on both sides of the equation
3s3=3103951004
Calculate
s=3103951004
Simplify the root
More Steps

Evaluate
3103951004
To take a root of a fraction,take the root of the numerator and denominator separately
31039531004
Simplify the radical expression
More Steps

Evaluate
310395
Write the expression as a product where the root of one of the factors can be evaluated
327×385
Write the number in exponential form with the base of 3
333×385
The root of a product is equal to the product of the roots of each factor
333×3385
Reduce the index of the radical and exponent with 3
33385
3338531004
Multiply by the Conjugate
33385×3385231004×33852
The product of roots with the same index is equal to the root of the product
33385×3385231004×3852
Multiply the numbers
More Steps

Evaluate
33385×33852
Multiply the terms
3×385
Multiply the terms
1155
115531004×3852
s=115531004×3852
Check if the solution is in the defined range
s=115531004×3852,s=0
Solution
s=115531004×3852
Alternative Form
s≈0.458814
Show Solution
