Question
Simplify the expression
73v−50v2
Evaluate
73v−5v×10v
Solution
More Steps

Evaluate
5v×10v
Multiply the terms
50v×v
Multiply the terms
50v2
73v−50v2
Show Solution

Factor the expression
v(73−50v)
Evaluate
73v−5v×10v
Multiply
More Steps

Evaluate
5v×10v
Multiply the terms
50v×v
Multiply the terms
50v2
73v−50v2
Rewrite the expression
v×73−v×50v
Solution
v(73−50v)
Show Solution

Find the roots
v1=0,v2=5073
Alternative Form
v1=0,v2=1.46
Evaluate
73v−5v×10v
To find the roots of the expression,set the expression equal to 0
73v−5v×10v=0
Multiply
More Steps

Multiply the terms
5v×10v
Multiply the terms
50v×v
Multiply the terms
50v2
73v−50v2=0
Factor the expression
More Steps

Evaluate
73v−50v2
Rewrite the expression
v×73−v×50v
Factor out v from the expression
v(73−50v)
v(73−50v)=0
When the product of factors equals 0,at least one factor is 0
v=073−50v=0
Solve the equation for v
More Steps

Evaluate
73−50v=0
Move the constant to the right-hand side and change its sign
−50v=0−73
Removing 0 doesn't change the value,so remove it from the expression
−50v=−73
Change the signs on both sides of the equation
50v=73
Divide both sides
5050v=5073
Divide the numbers
v=5073
v=0v=5073
Solution
v1=0,v2=5073
Alternative Form
v1=0,v2=1.46
Show Solution
