Question
7556x2×3802783x×7−8000
Simplify the expression
201136798436x3−8000
Evaluate
7556x2×3802783x×7−8000
Solution
More Steps

Evaluate
7556x2×3802783x×7
Multiply the terms
More Steps

Evaluate
7556×3802783×7
Multiply the terms
28733828348×7
Multiply the numbers
201136798436
201136798436x2×x
Multiply the terms with the same base by adding their exponents
201136798436x2+1
Add the numbers
201136798436x3
201136798436x3−8000
Show Solution

Factor the expression
4(50284199609x3−2000)
Evaluate
7556x2×3802783x×7−8000
Multiply
More Steps

Evaluate
7556x2×3802783x×7
Multiply the terms
More Steps

Evaluate
7556×3802783×7
Multiply the terms
28733828348×7
Multiply the numbers
201136798436
201136798436x2×x
Multiply the terms with the same base by adding their exponents
201136798436x2+1
Add the numbers
201136798436x3
201136798436x3−8000
Solution
4(50284199609x3−2000)
Show Solution

Find the roots
x=502841996091032×502841996092
Alternative Form
x≈0.003413
Evaluate
7556x2×3802783x×7−8000
To find the roots of the expression,set the expression equal to 0
7556x2×3802783x×7−8000=0
Multiply
More Steps

Multiply the terms
7556x2×3802783x×7
Multiply the terms
More Steps

Evaluate
7556×3802783×7
Multiply the terms
28733828348×7
Multiply the numbers
201136798436
201136798436x2×x
Multiply the terms with the same base by adding their exponents
201136798436x2+1
Add the numbers
201136798436x3
201136798436x3−8000=0
Move the constant to the right-hand side and change its sign
201136798436x3=0+8000
Removing 0 doesn't change the value,so remove it from the expression
201136798436x3=8000
Divide both sides
201136798436201136798436x3=2011367984368000
Divide the numbers
x3=2011367984368000
Cancel out the common factor 4
x3=502841996092000
Take the 3-th root on both sides of the equation
3x3=3502841996092000
Calculate
x=3502841996092000
Solution
More Steps

Evaluate
3502841996092000
To take a root of a fraction,take the root of the numerator and denominator separately
35028419960932000
Simplify the radical expression
More Steps

Evaluate
32000
Write the expression as a product where the root of one of the factors can be evaluated
31000×2
Write the number in exponential form with the base of 10
3103×2
The root of a product is equal to the product of the roots of each factor
3103×32
Reduce the index of the radical and exponent with 3
1032
3502841996091032
Multiply by the Conjugate
350284199609×35028419960921032×3502841996092
The product of roots with the same index is equal to the root of the product
350284199609×35028419960921032×502841996092
Multiply the numbers
More Steps

Evaluate
350284199609×3502841996092
The product of roots with the same index is equal to the root of the product
350284199609×502841996092
Calculate the product
3502841996093
Reduce the index of the radical and exponent with 3
50284199609
502841996091032×502841996092
x=502841996091032×502841996092
Alternative Form
x≈0.003413
Show Solution
