Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
a1=−565+123,a2=56−5+123
Alternative Form
a1≈−0.287331,a2≈0.10876
Evaluate
7a2×32=7−40a
Multiply the terms
224a2=7−40a
Move the expression to the left side
224a2−7+40a=0
Rewrite in standard form
224a2+40a−7=0
Substitute a=224,b=40 and c=−7 into the quadratic formula a=2a−b±b2−4ac
a=2×224−40±402−4×224(−7)
Simplify the expression
a=448−40±402−4×224(−7)
Simplify the expression
More Steps

Evaluate
402−4×224(−7)
Multiply
More Steps

Multiply the terms
4×224(−7)
Rewrite the expression
−4×224×7
Multiply the terms
−6272
402−(−6272)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
402+6272
Evaluate the power
1600+6272
Add the numbers
7872
a=448−40±7872
Simplify the radical expression
More Steps

Evaluate
7872
Write the expression as a product where the root of one of the factors can be evaluated
64×123
Write the number in exponential form with the base of 8
82×123
The root of a product is equal to the product of the roots of each factor
82×123
Reduce the index of the radical and exponent with 2
8123
a=448−40±8123
Separate the equation into 2 possible cases
a=448−40+8123a=448−40−8123
Simplify the expression
More Steps

Evaluate
a=448−40+8123
Divide the terms
More Steps

Evaluate
448−40+8123
Rewrite the expression
4488(−5+123)
Cancel out the common factor 8
56−5+123
a=56−5+123
a=56−5+123a=448−40−8123
Simplify the expression
More Steps

Evaluate
a=448−40−8123
Divide the terms
More Steps

Evaluate
448−40−8123
Rewrite the expression
4488(−5−123)
Cancel out the common factor 8
56−5−123
Use b−a=−ba=−ba to rewrite the fraction
−565+123
a=−565+123
a=56−5+123a=−565+123
Solution
a1=−565+123,a2=56−5+123
Alternative Form
a1≈−0.287331,a2≈0.10876
Show Solution
