Question
Solve the equation
a={−arccos(−0.588316)+2kπarccos(−0.588316)+2kπ,k∈Z
Alternative Form
a≈{−2.199771+2kπ2.199771+2kπ,k∈Z
Alternative Form
a≈{−126.037584∘+360∘k126.037584∘+360∘k,k∈Z
Evaluate
7sin(a)(13×5cos(a))sin(a)−17cos(a)=3
Remove the parentheses
7sin(a)×13×5cos(a)sin(a)−17cos(a)=3
Multiply
More Steps

Evaluate
7sin(a)×13×5cos(a)sin(a)
Multiply the terms
91sin(a)×5cos(a)sin(a)
Multiply the terms
91sin2(a)×5cos(a)
Multiply the terms
591sin2(a)cos(a)
591sin2(a)cos(a)−17cos(a)=3
Use sin2(x)=1−cos2(x) to rewrite the expression
56cos(a)−91cos3(a)=3
Cross multiply
6cos(a)−91cos3(a)=5×3
Simplify the equation
6cos(a)−91cos3(a)=15
Move the expression to the left side
6cos(a)−91cos3(a)−15=0
Calculate
cos(a)≈−0.588316
Use the inverse trigonometric function
a=arccos(−0.588316)
Calculate
a=−arccos(−0.588316)a=arccos(−0.588316)
Add the period of 2kπ,k∈Z to find all solutions
a=−arccos(−0.588316)+2kπ,k∈Za=arccos(−0.588316)+2kπ,k∈Z
Solution
a={−arccos(−0.588316)+2kπarccos(−0.588316)+2kπ,k∈Z
Alternative Form
a≈{−2.199771+2kπ2.199771+2kπ,k∈Z
Alternative Form
a≈{−126.037584∘+360∘k126.037584∘+360∘k,k∈Z
Show Solution
