Question
Solve the equation(The real numbers system)
w∈/R
Alternative Form
No real solution
Evaluate
7w−2(w−9)=4−8w2
Swap the sides
4−8w2=7w−2(w−9)
Expand the expression
More Steps

Evaluate
7w−2(w−9)
Multiply the terms
More Steps

Evaluate
−2(w−9)
Apply the distributive property
−2w−(−2×9)
Multiply the numbers
−2w−(−18)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2w+18
7w−2w+18
Subtract the terms
More Steps

Evaluate
7w−2w
Collect like terms by calculating the sum or difference of their coefficients
(7−2)w
Subtract the numbers
5w
5w+18
4−8w2=5w+18
Move the expression to the left side
−14−8w2−5w=0
Rewrite in standard form
−8w2−5w−14=0
Multiply both sides
8w2+5w+14=0
Substitute a=8,b=5 and c=14 into the quadratic formula w=2a−b±b2−4ac
w=2×8−5±52−4×8×14
Simplify the expression
w=16−5±52−4×8×14
Simplify the expression
More Steps

Evaluate
52−4×8×14
Multiply the terms
More Steps

Multiply the terms
4×8×14
Multiply the terms
32×14
Multiply the numbers
448
52−448
Evaluate the power
25−448
Subtract the numbers
−423
w=16−5±−423
Solution
w∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
w1=−165−16347i,w2=−165+16347i
Alternative Form
w1≈−0.3125−1.285435i,w2≈−0.3125+1.285435i
Evaluate
7w−2(w−9)=4−8w2
Swap the sides
4−8w2=7w−2(w−9)
Expand the expression
More Steps

Evaluate
7w−2(w−9)
Multiply the terms
More Steps

Evaluate
−2(w−9)
Apply the distributive property
−2w−(−2×9)
Multiply the numbers
−2w−(−18)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2w+18
7w−2w+18
Subtract the terms
More Steps

Evaluate
7w−2w
Collect like terms by calculating the sum or difference of their coefficients
(7−2)w
Subtract the numbers
5w
5w+18
4−8w2=5w+18
Move the expression to the left side
−14−8w2−5w=0
Rewrite in standard form
−8w2−5w−14=0
Multiply both sides
8w2+5w+14=0
Substitute a=8,b=5 and c=14 into the quadratic formula w=2a−b±b2−4ac
w=2×8−5±52−4×8×14
Simplify the expression
w=16−5±52−4×8×14
Simplify the expression
More Steps

Evaluate
52−4×8×14
Multiply the terms
More Steps

Multiply the terms
4×8×14
Multiply the terms
32×14
Multiply the numbers
448
52−448
Evaluate the power
25−448
Subtract the numbers
−423
w=16−5±−423
Simplify the radical expression
More Steps

Evaluate
−423
Evaluate the power
423×−1
Evaluate the power
423×i
Evaluate the power
More Steps

Evaluate
423
Write the expression as a product where the root of one of the factors can be evaluated
9×47
Write the number in exponential form with the base of 3
32×47
The root of a product is equal to the product of the roots of each factor
32×47
Reduce the index of the radical and exponent with 2
347
347×i
w=16−5±347×i
Separate the equation into 2 possible cases
w=16−5+347×iw=16−5−347×i
Simplify the expression
More Steps

Evaluate
w=16−5+347×i
Divide the terms
More Steps

Evaluate
16−5+347×i
Use b−a=−ba=−ba to rewrite the fraction
−165−347×i
Simplify
−165+16347i
w=−165+16347i
w=−165+16347iw=16−5−347×i
Simplify the expression
More Steps

Evaluate
w=16−5−347×i
Divide the terms
More Steps

Evaluate
16−5−347×i
Use b−a=−ba=−ba to rewrite the fraction
−165+347×i
Simplify
−165−16347i
w=−165−16347i
w=−165+16347iw=−165−16347i
Solution
w1=−165−16347i,w2=−165+16347i
Alternative Form
w1≈−0.3125−1.285435i,w2≈−0.3125+1.285435i
Show Solution
