Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−71+15,x2=7−1+15
Alternative Form
x1≈−0.69614,x2≈0.410426
Evaluate
7x2+2x−2=0
Substitute a=7,b=2 and c=−2 into the quadratic formula x=2a−b±b2−4ac
x=2×7−2±22−4×7(−2)
Simplify the expression
x=14−2±22−4×7(−2)
Simplify the expression
More Steps

Evaluate
22−4×7(−2)
Multiply
More Steps

Multiply the terms
4×7(−2)
Rewrite the expression
−4×7×2
Multiply the terms
−56
22−(−56)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+56
Evaluate the power
4+56
Add the numbers
60
x=14−2±60
Simplify the radical expression
More Steps

Evaluate
60
Write the expression as a product where the root of one of the factors can be evaluated
4×15
Write the number in exponential form with the base of 2
22×15
The root of a product is equal to the product of the roots of each factor
22×15
Reduce the index of the radical and exponent with 2
215
x=14−2±215
Separate the equation into 2 possible cases
x=14−2+215x=14−2−215
Simplify the expression
More Steps

Evaluate
x=14−2+215
Divide the terms
More Steps

Evaluate
14−2+215
Rewrite the expression
142(−1+15)
Cancel out the common factor 2
7−1+15
x=7−1+15
x=7−1+15x=14−2−215
Simplify the expression
More Steps

Evaluate
x=14−2−215
Divide the terms
More Steps

Evaluate
14−2−215
Rewrite the expression
142(−1−15)
Cancel out the common factor 2
7−1−15
Use b−a=−ba=−ba to rewrite the fraction
−71+15
x=−71+15
x=7−1+15x=−71+15
Solution
x1=−71+15,x2=7−1+15
Alternative Form
x1≈−0.69614,x2≈0.410426
Show Solution
