Question
Find the roots
x1=711−191,x2=711+191
Alternative Form
x1≈−0.402896,x2≈3.545754
Evaluate
7x2−22x−10
To find the roots of the expression,set the expression equal to 0
7x2−22x−10=0
Substitute a=7,b=−22 and c=−10 into the quadratic formula x=2a−b±b2−4ac
x=2×722±(−22)2−4×7(−10)
Simplify the expression
x=1422±(−22)2−4×7(−10)
Simplify the expression
More Steps

Evaluate
(−22)2−4×7(−10)
Multiply
More Steps

Multiply the terms
4×7(−10)
Any expression multiplied by 1 remains the same
−4×7×10
Multiply the terms
−28×10
Multiply the numbers
−280
(−22)2−(−280)
Rewrite the expression
222−(−280)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
222+280
Evaluate the power
484+280
Add the numbers
764
x=1422±764
Simplify the radical expression
More Steps

Evaluate
764
Write the expression as a product where the root of one of the factors can be evaluated
4×191
Write the number in exponential form with the base of 2
22×191
The root of a product is equal to the product of the roots of each factor
22×191
Reduce the index of the radical and exponent with 2
2191
x=1422±2191
Separate the equation into 2 possible cases
x=1422+2191x=1422−2191
Simplify the expression
More Steps

Evaluate
x=1422+2191
Divide the terms
More Steps

Evaluate
1422+2191
Rewrite the expression
142(11+191)
Cancel out the common factor 2
711+191
x=711+191
x=711+191x=1422−2191
Simplify the expression
More Steps

Evaluate
x=1422−2191
Divide the terms
More Steps

Evaluate
1422−2191
Rewrite the expression
142(11−191)
Cancel out the common factor 2
711−191
x=711−191
x=711+191x=711−191
Solution
x1=711−191,x2=711+191
Alternative Form
x1≈−0.402896,x2≈3.545754
Show Solution
