Question
7x2−22x−13
Find the roots
x1=711−253,x2=711+253
Alternative Form
x1≈−0.508603,x2≈3.65146
Evaluate
7x2−22x−13
To find the roots of the expression,set the expression equal to 0
7x2−22x−13=0
Substitute a=7,b=−22 and c=−13 into the quadratic formula x=2a−b±b2−4ac
x=2×722±(−22)2−4×7(−13)
Simplify the expression
x=1422±(−22)2−4×7(−13)
Simplify the expression
More Steps

Evaluate
(−22)2−4×7(−13)
Multiply
More Steps

Multiply the terms
4×7(−13)
Rewrite the expression
−4×7×13
Multiply the terms
−364
(−22)2−(−364)
Rewrite the expression
222−(−364)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
222+364
Evaluate the power
484+364
Add the numbers
848
x=1422±848
Simplify the radical expression
More Steps

Evaluate
848
Write the expression as a product where the root of one of the factors can be evaluated
16×53
Write the number in exponential form with the base of 4
42×53
The root of a product is equal to the product of the roots of each factor
42×53
Reduce the index of the radical and exponent with 2
453
x=1422±453
Separate the equation into 2 possible cases
x=1422+453x=1422−453
Simplify the expression
More Steps

Evaluate
x=1422+453
Divide the terms
More Steps

Evaluate
1422+453
Rewrite the expression
142(11+253)
Cancel out the common factor 2
711+253
x=711+253
x=711+253x=1422−453
Simplify the expression
More Steps

Evaluate
x=1422−453
Divide the terms
More Steps

Evaluate
1422−453
Rewrite the expression
142(11−253)
Cancel out the common factor 2
711−253
x=711−253
x=711+253x=711−253
Solution
x1=711−253,x2=711+253
Alternative Form
x1≈−0.508603,x2≈3.65146
Show Solution
