Question
Simplify the expression
151y2−72y3
Evaluate
7y2−2(3(2y−4)×3×2y2)
Remove the parentheses
7y2−2×3(2y−4)×3×2y2
Multiply
More Steps

Multiply the terms
2×3(2y−4)×3×2y2
Multiply the terms
More Steps

Evaluate
2×3×3×2
Multiply the terms
6×3×2
Multiply the terms
18×2
Multiply the numbers
36
36(2y−4)y2
Multiply the terms
36y2(2y−4)
7y2−36y2(2y−4)
Expand the expression
More Steps

Calculate
−36y2(2y−4)
Apply the distributive property
−36y2×2y−(−36y2×4)
Multiply the terms
More Steps

Evaluate
−36y2×2y
Multiply the numbers
−72y2×y
Multiply the terms
−72y3
−72y3−(−36y2×4)
Multiply the numbers
−72y3−(−144y2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−72y3+144y2
7y2−72y3+144y2
Solution
More Steps

Evaluate
7y2+144y2
Collect like terms by calculating the sum or difference of their coefficients
(7+144)y2
Add the numbers
151y2
151y2−72y3
Show Solution

Factor the expression
(151−72y)y2
Evaluate
7y2−2(3(2y−4)×3×2y2)
Remove the parentheses
7y2−2×3(2y−4)×3×2y2
Multiply
More Steps

Multiply the terms
3(2y−4)×3×2y2
Multiply the terms
More Steps

Evaluate
3×3×2
Multiply the terms
9×2
Multiply the numbers
18
18(2y−4)y2
Multiply the terms
18y2(2y−4)
7y2−2×18y2(2y−4)
Calculate
7y2−36y2(2y−4)
Rewrite the expression
7y2−72(y−2)y2
Factor out y2 from the expression
(7−72(y−2))y2
Solution
(151−72y)y2
Show Solution

Find the roots
y1=0,y2=72151
Alternative Form
y1=0,y2=2.0972˙
Evaluate
7y2−2(3(2y−4)×3(2y2))
To find the roots of the expression,set the expression equal to 0
7y2−2(3(2y−4)×3(2y2))=0
Multiply the terms
7y2−2(3(2y−4)×3×2y2)=0
Multiply
More Steps

Multiply the terms
3(2y−4)×3×2y2
Multiply the terms
More Steps

Evaluate
3×3×2
Multiply the terms
9×2
Multiply the numbers
18
18(2y−4)y2
Multiply the terms
18y2(2y−4)
7y2−2×18y2(2y−4)=0
Multiply the terms
7y2−36y2(2y−4)=0
Calculate
More Steps

Evaluate
7y2−36y2(2y−4)
Expand the expression
More Steps

Calculate
−36y2(2y−4)
Apply the distributive property
−36y2×2y−(−36y2×4)
Multiply the terms
−72y3−(−36y2×4)
Multiply the numbers
−72y3−(−144y2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−72y3+144y2
7y2−72y3+144y2
Add the terms
More Steps

Evaluate
7y2+144y2
Collect like terms by calculating the sum or difference of their coefficients
(7+144)y2
Add the numbers
151y2
151y2−72y3
151y2−72y3=0
Factor the expression
y2(151−72y)=0
Separate the equation into 2 possible cases
y2=0151−72y=0
The only way a power can be 0 is when the base equals 0
y=0151−72y=0
Solve the equation
More Steps

Evaluate
151−72y=0
Move the constant to the right-hand side and change its sign
−72y=0−151
Removing 0 doesn't change the value,so remove it from the expression
−72y=−151
Change the signs on both sides of the equation
72y=151
Divide both sides
7272y=72151
Divide the numbers
y=72151
y=0y=72151
Solution
y1=0,y2=72151
Alternative Form
y1=0,y2=2.0972˙
Show Solution
