Question
Solve the equation
θ=4π+2kπ,k∈Z
Alternative Form
θ=45∘+90∘k,k∈Z
Alternative Form
θ≈0.785398+2kπ,k∈Z
Evaluate
8cos(2θ)×4=0
Multiply the terms
32cos(2θ)=0
Multiply both sides of the equation by 321
32cos(2θ)×321=0×321
Calculate
cos(2θ)=0×321
Any expression multiplied by 0 equals 0
cos(2θ)=0
Use the inverse trigonometric function
2θ=arccos(0)
Calculate
2θ=2π
Add the period of kπ,k∈Z to find all solutions
2θ=2π+kπ,k∈Z
Solution
More Steps

Evaluate
2θ=2π+kπ
Divide both sides
22θ=22π+kπ
Divide the numbers
θ=22π+kπ
Divide the numbers
θ=4π+2kπ
θ=4π+2kπ,k∈Z
Alternative Form
θ=45∘+90∘k,k∈Z
Alternative Form
θ≈0.785398+2kπ,k∈Z
Show Solution

Rewrite the equation
x2−y2=0
Evaluate
8cos(2θ)×4=0
Evaluate
32cos(2θ)=0
Simplify the expression
32cos2(θ)−32sin2(θ)=0
Multiply both sides
32(rcos(θ))2−32(rsin(θ))2=0
Use substitution
More Steps

Evaluate
32(rcos(θ))2−32(rsin(θ))2
To covert the equation to rectangular coordinates using conversion formulas,substitute rcosθ for x
32x2−32(rsin(θ))2
To covert the equation to rectangular coordinates using conversion formulas,substitute rsinθ for y
32x2−32y2
32x2−32y2=0
Solution
x2−y2=0
Show Solution
