Question
Simplify the expression
m+21n
Evaluate
158(343×m−165n)−203(632×m−494×n)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
343
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
43×4+3
Multiply the terms
412+3
Add the terms
415
158(415m−165n)−203(632×m−494×n)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
632
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
36×3+2
Multiply the terms
318+2
Add the terms
320
158(415m−165n)−203(320m−494×n)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
494
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
94×9+4
Multiply the terms
936+4
Add the terms
940
158(415m−165n)−203(320m−940n)
Multiply the terms
More Steps

Evaluate
158(415m−165n)
Apply the distributive property
158×415m−158×165n
Multiply the numbers
More Steps

Evaluate
158×415
Reduce the numbers
152×15
Reduce the numbers
2×1
Simplify
2
2m−158×165n
Multiply the numbers
More Steps

Evaluate
158×165
Reduce the numbers
151×25
Reduce the numbers
31×21
To multiply the fractions,multiply the numerators and denominators separately
3×21
Multiply the numbers
61
2m−61n
2m−61n−203(320m−940n)
Multiply the terms
More Steps

Evaluate
203(320m−940n)
Apply the distributive property
203×320m−203×940n
Multiply the numbers
More Steps

Evaluate
203×320
Reduce the numbers
201×20
Reduce the numbers
1×1
Simplify
1
m−203×940n
Multiply the numbers
More Steps

Evaluate
203×940
Reduce the numbers
201×340
Reduce the numbers
1×32
Multiply the numbers
32
m−32n
2m−61n−(m−32n)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2m−61n−m+32n
Subtract the terms
More Steps

Evaluate
2m−m
Collect like terms by calculating the sum or difference of their coefficients
(2−1)m
Subtract the numbers
m
m−61n+32n
Solution
More Steps

Evaluate
−61n+32n
Collect like terms by calculating the sum or difference of their coefficients
(−61+32)n
Add the numbers
More Steps

Evaluate
−61+32
Reduce fractions to a common denominator
−61+3×22×2
Multiply the numbers
−61+62×2
Write all numerators above the common denominator
6−1+2×2
Multiply the numbers
6−1+4
Add the numbers
63
Cancel out the common factor 3
21
21n
m+21n
Show Solution

Factor the expression
21(2m+n)
Evaluate
158(343×m−165n)−203(632×m−494×n)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
343
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
43×4+3
Multiply the terms
412+3
Add the terms
415
158(415m−165n)−203(632×m−494×n)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
632
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
36×3+2
Multiply the terms
318+2
Add the terms
320
158(415m−165n)−203(320m−494×n)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
494
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
94×9+4
Multiply the terms
936+4
Add the terms
940
158(415m−165n)−203(320m−940n)
Simplify
More Steps

Evaluate
158(415m−165n)
Apply the distributive property
158×415m+158(−165n)
Multiply the terms
More Steps

Evaluate
158×415
Reduce the numbers
152×15
Reduce the numbers
2×1
Simplify
2
2m+158(−165n)
Multiply the terms
More Steps

Evaluate
158(−165)
Multiplying or dividing an odd number of negative terms equals a negative
−158×165
Reduce the numbers
−151×25
Reduce the numbers
−31×21
To multiply the fractions,multiply the numerators and denominators separately
−3×21
Multiply the numbers
−61
2m−61n
2m−61n−203(320m−940n)
Simplify
More Steps

Evaluate
−203(320m−940n)
Apply the distributive property
−203×320m−203(−940n)
Multiply the terms
More Steps

Evaluate
−203×320
Reduce the numbers
−201×20
Reduce the numbers
−1×1
Simplify
−1
−m−203(−940n)
Multiply the terms
More Steps

Evaluate
−203(−940)
Multiplying or dividing an even number of negative terms equals a positive
203×940
Reduce the numbers
201×340
Reduce the numbers
1×32
Multiply the numbers
32
−m+32n
2m−61n−m+32n
Subtract the terms
More Steps

Evaluate
2m−m
Collect like terms by calculating the sum or difference of their coefficients
(2−1)m
Subtract the numbers
m
m−61n+32n
Add the terms
More Steps

Evaluate
−61n+32n
Collect like terms by calculating the sum or difference of their coefficients
(−61+32)n
Add the numbers
More Steps

Evaluate
−61+32
Reduce fractions to a common denominator
−61+3×22×2
Multiply the numbers
−61+62×2
Write all numerators above the common denominator
6−1+2×2
Multiply the numbers
6−1+4
Add the numbers
63
Cancel out the common factor 3
21
21n
m+21n
Solution
21(2m+n)
Show Solution
