Question
Solve the equation
x1=0,x2=33log3(2)37
Alternative Form
x1=0,x2≈1.546436
Evaluate
8(x4)=3x×7
Use the commutative property to reorder the terms
8(x4)=37x
Take the logarithm of both sides
log3(8(x4))=log3(37x)
Evaluate the logarithm
3x4log3(2)=7x
Calculate
3log3(2)×x4=7x
Add or subtract both sides
3log3(2)×x4−7x=0
Factor the expression
x(3log3(2)×x3−7)=0
Separate the equation into 2 possible cases
x=03log3(2)×x3−7=0
Solve the equation
More Steps

Evaluate
3log3(2)×x3−7=0
Move the constant to the right-hand side and change its sign
3log3(2)×x3=0+7
Removing 0 doesn't change the value,so remove it from the expression
3log3(2)×x3=7
Divide both sides
3log3(2)3log3(2)×x3=3log3(2)7
Divide the numbers
x3=3log3(2)7
Take the 3-th root on both sides of the equation
3x3=33log3(2)7
Calculate
x=33log3(2)7
To take a root of a fraction,take the root of the numerator and denominator separately
x=33log3(2)37
x=0x=33log3(2)37
Solution
x1=0,x2=33log3(2)37
Alternative Form
x1=0,x2≈1.546436
Show Solution
