Question
8×18x−1×(2−1×x)×4×54x
Simplify the expression
−288x+216x2
Evaluate
8×18x−1×(2−1×x)×4×54x
Any expression multiplied by 1 remains the same
8×18x−1×(2−x)×4×54x
Multiply the numbers
144x−1×(2−x)×4×54x
Multiply the terms
More Steps

Multiply the terms
1×(2−x)×4×54x
Rewrite the expression
(2−x)×4×54x
Multiply the terms
(2−x)×216x
Multiply the terms
216x(2−x)
144x−216x(2−x)
Expand the expression
More Steps

Calculate
−216x(2−x)
Apply the distributive property
−216x×2−(−216x×x)
Multiply the numbers
−432x−(−216x×x)
Multiply the terms
−432x−(−216x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−432x+216x2
144x−432x+216x2
Solution
More Steps

Evaluate
144x−432x
Collect like terms by calculating the sum or difference of their coefficients
(144−432)x
Subtract the numbers
−288x
−288x+216x2
Show Solution

Factor the expression
72x(−4+3x)
Evaluate
8×18x−1×(2−1×x)×4×54x
Any expression multiplied by 1 remains the same
8×18x−1×(2−x)×4×54x
Multiply the numbers
More Steps

Evaluate
8×18
Multiply the numbers
144
Evaluate
144x
144x−1×(2−x)×4×54x
Multiply the terms
More Steps

Multiply the terms
1×(2−x)×4×54x
Rewrite the expression
(2−x)×4×54x
Multiply the terms
(2−x)×216x
Multiply the terms
216x(2−x)
144x−216x(2−x)
Rewrite the expression
72x×2−72x×3(2−x)
Factor out 72x from the expression
72x(2−3(2−x))
Solution
72x(−4+3x)
Show Solution

Find the roots
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Evaluate
8(18x)−1×(2−1×x)×4(54x)
To find the roots of the expression,set the expression equal to 0
8(18x)−1×(2−1×x)×4(54x)=0
Multiply the terms
8×18x−1×(2−1×x)×4(54x)=0
Any expression multiplied by 1 remains the same
8×18x−1×(2−x)×4(54x)=0
Multiply the terms
8×18x−1×(2−x)×4×54x=0
Multiply the numbers
144x−1×(2−x)×4×54x=0
Multiply the terms
More Steps

Multiply the terms
1×(2−x)×4×54x
Rewrite the expression
(2−x)×4×54x
Multiply the terms
(2−x)×216x
Multiply the terms
216x(2−x)
144x−216x(2−x)=0
Calculate
More Steps

Evaluate
144x−216x(2−x)
Expand the expression
More Steps

Calculate
−216x(2−x)
Apply the distributive property
−216x×2−(−216x×x)
Multiply the numbers
−432x−(−216x×x)
Multiply the terms
−432x−(−216x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−432x+216x2
144x−432x+216x2
Subtract the terms
More Steps

Evaluate
144x−432x
Collect like terms by calculating the sum or difference of their coefficients
(144−432)x
Subtract the numbers
−288x
−288x+216x2
−288x+216x2=0
Factor the expression
More Steps

Evaluate
−288x+216x2
Rewrite the expression
−72x×4+72x×3x
Factor out −72x from the expression
−72x(4−3x)
−72x(4−3x)=0
When the product of factors equals 0,at least one factor is 0
−72x=04−3x=0
Solve the equation for x
More Steps

Evaluate
−72x=0
Change the signs on both sides of the equation
72x=0
Rewrite the expression
x=0
x=04−3x=0
Solve the equation for x
More Steps

Evaluate
4−3x=0
Move the constant to the right-hand side and change its sign
−3x=0−4
Removing 0 doesn't change the value,so remove it from the expression
−3x=−4
Change the signs on both sides of the equation
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=0x=34
Solution
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Show Solution
