Question
Simplify the expression
8a2−243470a
Evaluate
8(a×a)−2510a×97
Remove the parentheses
8a×a−2510a×97
Multiply the terms
8a2−2510a×97
Solution
8a2−243470a
Show Solution

Factor the expression
2a(4a−121735)
Evaluate
8(a×a)−2510a×97
Remove the parentheses
8a×a−2510a×97
Multiply the terms
8a2−2510a×97
Multiply the terms
8a2−243470a
Rewrite the expression
2a×4a−2a×121735
Solution
2a(4a−121735)
Show Solution

Find the roots
a1=0,a2=4121735
Alternative Form
a1=0,a2=30433.75
Evaluate
8(a×a)−2510a×97
To find the roots of the expression,set the expression equal to 0
8(a×a)−2510a×97=0
Multiply the terms
8a2−2510a×97=0
Multiply the terms
8a2−243470a=0
Factor the expression
More Steps

Evaluate
8a2−243470a
Rewrite the expression
2a×4a−2a×121735
Factor out 2a from the expression
2a(4a−121735)
2a(4a−121735)=0
When the product of factors equals 0,at least one factor is 0
2a=04a−121735=0
Solve the equation for a
a=04a−121735=0
Solve the equation for a
More Steps

Evaluate
4a−121735=0
Move the constant to the right-hand side and change its sign
4a=0+121735
Removing 0 doesn't change the value,so remove it from the expression
4a=121735
Divide both sides
44a=4121735
Divide the numbers
a=4121735
a=0a=4121735
Solution
a1=0,a2=4121735
Alternative Form
a1=0,a2=30433.75
Show Solution
