Question
Simplify the expression
49a294a−342
Evaluate
8−2−98684÷a
Cancel out the common factor 2
8−2−49342÷a
Divide the terms
More Steps

Evaluate
49342÷a
Multiply by the reciprocal
49342×a1
Multiply the terms
49a342
8−2−49a342
Subtract the numbers
6−49a342
Reduce fractions to a common denominator
49a6×49a−49a342
Write all numerators above the common denominator
49a6×49a−342
Solution
49a294a−342
Show Solution

Find the excluded values
a=0
Evaluate
8−2−98684÷a
Solution
a=0
Show Solution

Find the roots
a=4957
Alternative Form
a≈1.163265
Evaluate
8−2−98684÷a
To find the roots of the expression,set the expression equal to 0
8−2−98684÷a=0
Find the domain
8−2−98684÷a=0,a=0
Calculate
8−2−98684÷a=0
Cancel out the common factor 2
8−2−49342÷a=0
Divide the terms
More Steps

Evaluate
49342÷a
Multiply by the reciprocal
49342×a1
Multiply the terms
49a342
8−2−49a342=0
Subtract the numbers
6−49a342=0
Subtract the terms
More Steps

Simplify
6−49a342
Reduce fractions to a common denominator
49a6×49a−49a342
Write all numerators above the common denominator
49a6×49a−342
Multiply the terms
49a294a−342
49a294a−342=0
Cross multiply
294a−342=49a×0
Simplify the equation
294a−342=0
Move the constant to the right side
294a=0+342
Removing 0 doesn't change the value,so remove it from the expression
294a=342
Divide both sides
294294a=294342
Divide the numbers
a=294342
Cancel out the common factor 6
a=4957
Check if the solution is in the defined range
a=4957,a=0
Solution
a=4957
Alternative Form
a≈1.163265
Show Solution
