Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−336+4123,x2=3−36+4123
Alternative Form
x1≈−26.787382,x2≈2.787382
Evaluate
8−3x2=72(x−3)
Expand the expression
More Steps

Evaluate
72(x−3)
Apply the distributive property
72x−72×3
Multiply the numbers
72x−216
8−3x2=72x−216
Move the expression to the left side
224−3x2−72x=0
Rewrite in standard form
−3x2−72x+224=0
Multiply both sides
3x2+72x−224=0
Substitute a=3,b=72 and c=−224 into the quadratic formula x=2a−b±b2−4ac
x=2×3−72±722−4×3(−224)
Simplify the expression
x=6−72±722−4×3(−224)
Simplify the expression
More Steps

Evaluate
722−4×3(−224)
Multiply
More Steps

Multiply the terms
4×3(−224)
Rewrite the expression
−4×3×224
Multiply the terms
−2688
722−(−2688)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
722+2688
Evaluate the power
5184+2688
Add the numbers
7872
x=6−72±7872
Simplify the radical expression
More Steps

Evaluate
7872
Write the expression as a product where the root of one of the factors can be evaluated
64×123
Write the number in exponential form with the base of 8
82×123
The root of a product is equal to the product of the roots of each factor
82×123
Reduce the index of the radical and exponent with 2
8123
x=6−72±8123
Separate the equation into 2 possible cases
x=6−72+8123x=6−72−8123
Simplify the expression
More Steps

Evaluate
x=6−72+8123
Divide the terms
More Steps

Evaluate
6−72+8123
Rewrite the expression
62(−36+4123)
Cancel out the common factor 2
3−36+4123
x=3−36+4123
x=3−36+4123x=6−72−8123
Simplify the expression
More Steps

Evaluate
x=6−72−8123
Divide the terms
More Steps

Evaluate
6−72−8123
Rewrite the expression
62(−36−4123)
Cancel out the common factor 2
3−36−4123
Use b−a=−ba=−ba to rewrite the fraction
−336+4123
x=−336+4123
x=3−36+4123x=−336+4123
Solution
x1=−336+4123,x2=3−36+4123
Alternative Form
x1≈−26.787382,x2≈2.787382
Show Solution
