Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=17035−32097,x2=17035+32097
Alternative Form
x1≈−0.847979,x2≈1.259743
Evaluate
850x2−350x−908=0
Substitute a=850,b=−350 and c=−908 into the quadratic formula x=2a−b±b2−4ac
x=2×850350±(−350)2−4×850(−908)
Simplify the expression
x=1700350±(−350)2−4×850(−908)
Simplify the expression
More Steps

Evaluate
(−350)2−4×850(−908)
Multiply
More Steps

Multiply the terms
4×850(−908)
Rewrite the expression
−4×850×908
Multiply the terms
−3087200
(−350)2−(−3087200)
Rewrite the expression
3502−(−3087200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3502+3087200
x=1700350±3502+3087200
Simplify the radical expression
More Steps

Evaluate
3502+3087200
Add the numbers
3209700
Write the expression as a product where the root of one of the factors can be evaluated
100×32097
Write the number in exponential form with the base of 10
102×32097
The root of a product is equal to the product of the roots of each factor
102×32097
Reduce the index of the radical and exponent with 2
1032097
x=1700350±1032097
Separate the equation into 2 possible cases
x=1700350+1032097x=1700350−1032097
Simplify the expression
More Steps

Evaluate
x=1700350+1032097
Divide the terms
More Steps

Evaluate
1700350+1032097
Rewrite the expression
170010(35+32097)
Cancel out the common factor 10
17035+32097
x=17035+32097
x=17035+32097x=1700350−1032097
Simplify the expression
More Steps

Evaluate
x=1700350−1032097
Divide the terms
More Steps

Evaluate
1700350−1032097
Rewrite the expression
170010(35−32097)
Cancel out the common factor 10
17035−32097
x=17035−32097
x=17035+32097x=17035−32097
Solution
x1=17035−32097,x2=17035+32097
Alternative Form
x1≈−0.847979,x2≈1.259743
Show Solution
