Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for a
−22+4<a<22+4
Alternative Form
a∈(−22+4,22+4)
Evaluate
8a2−4(2a−4)2>0
Rearrange the terms
−8a2+64a−64>0
Rewrite the expression
−8a2+64a−64=0
Add or subtract both sides
−8a2+64a=64
Divide both sides
−8−8a2+64a=−864
Evaluate
a2−8a=−8
Add the same value to both sides
a2−8a+16=−8+16
Simplify the expression
(a−4)2=8
Take the root of both sides of the equation and remember to use both positive and negative roots
a−4=±8
Simplify the expression
a−4=±22
Separate the equation into 2 possible cases
a−4=22a−4=−22
Move the constant to the right-hand side and change its sign
a=22+4a−4=−22
Move the constant to the right-hand side and change its sign
a=22+4a=−22+4
Determine the test intervals using the critical values
a<−22+4−22+4<a<22+4a>22+4
Choose a value form each interval
a1=0a2=4a3=8
To determine if a<−22+4 is the solution to the inequality,test if the chosen value a=0 satisfies the initial inequality
More Steps

Evaluate
8×02−4(2×0−4)2>0
Any expression multiplied by 0 equals 0
8×02−4(0−4)2>0
Simplify
More Steps

Evaluate
8×02−4(0−4)2
Calculate
8×0−4(0−4)2
Any expression multiplied by 0 equals 0
0−4(0−4)2
Removing 0 doesn't change the value,so remove it from the expression
0−4(−4)2
Multiply the terms
0−43
Removing 0 doesn't change the value,so remove it from the expression
−43
Evaluate the power
−64
−64>0
Check the inequality
false
a<−22+4 is not a solutiona2=4a3=8
To determine if −22+4<a<22+4 is the solution to the inequality,test if the chosen value a=4 satisfies the initial inequality
More Steps

Evaluate
8×42−4(2×4−4)2>0
Simplify
More Steps

Evaluate
8×42−4(2×4−4)2
Multiply the numbers
8×42−4(8−4)2
Subtract the numbers
8×42−4×42
Multiply the terms
128−4×42
Calculate the product
128−43
Evaluate the power
128−64
Subtract the numbers
64
64>0
Check the inequality
true
a<−22+4 is not a solution−22+4<a<22+4 is the solutiona3=8
To determine if a>22+4 is the solution to the inequality,test if the chosen value a=8 satisfies the initial inequality
More Steps

Evaluate
8×82−4(2×8−4)2>0
Simplify
More Steps

Evaluate
8×82−4(2×8−4)2
Multiply the numbers
8×82−4(16−4)2
Subtract the numbers
8×82−4×122
Calculate the product
83−4×122
Multiply the terms
83−576
Evaluate the power
512−576
Subtract the numbers
−64
−64>0
Check the inequality
false
a<−22+4 is not a solution−22+4<a<22+4 is the solutiona>22+4 is not a solution
Solution
−22+4<a<22+4
Alternative Form
a∈(−22+4,22+4)
Show Solution
