Question
Solve the equation
t=2arctan(−23+13)+kπ,k∈Z
Alternative Form
t≈−146.309932∘+180∘k,k∈Z
Alternative Form
t≈−2.55359+kπ,k∈Z
Evaluate
8cos(t)=12sin(t)
Move the expression to the left side
8cos(t)−12sin(t)=0
Simplify the equation using the Weierstrass substitution
8×1+tan2(21t)1−tan2(21t)−12×1+tan2(21t)2tan(21t)=0
Solve using substitution
8×1+t21−t2−12×1+t22t=0
Rewrite the expression
1+t28(1−t2)−12×1+t22t=0
Rewrite the expression
More Steps

Evaluate
−12×1+t22t
Rewrite the expression
1+t2−12×2t
Multiply the numbers
1+t2−24t
Use b−a=−ba=−ba to rewrite the fraction
−1+t224t
1+t28(1−t2)−1+t224t=0
Multiply both sides of the equation by LCD
(1+t28(1−t2)−1+t224t)(1+t2)=0×(1+t2)
Simplify the equation
More Steps

Evaluate
(1+t28(1−t2)−1+t224t)(1+t2)
Apply the distributive property
1+t28(1−t2)×(1+t2)−1+t224t×(1+t2)
Simplify
8(1−t2)−24t
Expand the expression
More Steps

Evaluate
8(1−t2)
Apply the distributive property
8×1−8t2
Any expression multiplied by 1 remains the same
8−8t2
8−8t2−24t
8−8t2−24t=0×(1+t2)
Any expression multiplied by 0 equals 0
8−8t2−24t=0
Rewrite in standard form
−8t2−24t+8=0
Multiply both sides
8t2+24t−8=0
Substitute a=8,b=24 and c=−8 into the quadratic formula t=2a−b±b2−4ac
t=2×8−24±242−4×8(−8)
Simplify the expression
t=16−24±242−4×8(−8)
Simplify the expression
More Steps

Evaluate
242−4×8(−8)
Multiply
More Steps

Multiply the terms
4×8(−8)
Rewrite the expression
−4×8×8
Multiply the terms
−256
242−(−256)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
242+256
Evaluate the power
576+256
Add the numbers
832
t=16−24±832
Simplify the radical expression
More Steps

Evaluate
832
Write the expression as a product where the root of one of the factors can be evaluated
64×13
Write the number in exponential form with the base of 8
82×13
The root of a product is equal to the product of the roots of each factor
82×13
Reduce the index of the radical and exponent with 2
813
t=16−24±813
Separate the equation into 2 possible cases
t=16−24+813t=16−24−813
Simplify the expression
More Steps

Evaluate
t=16−24+813
Divide the terms
More Steps

Evaluate
16−24+813
Rewrite the expression
168(−3+13)
Cancel out the common factor 8
2−3+13
t=2−3+13
t=2−3+13t=16−24−813
Simplify the expression
More Steps

Evaluate
t=16−24−813
Divide the terms
More Steps

Evaluate
16−24−813
Rewrite the expression
168(−3−13)
Cancel out the common factor 8
2−3−13
Use b−a=−ba=−ba to rewrite the fraction
−23+13
t=−23+13
t=2−3+13t=−23+13
Substitute back
tan(21t)=2−3+13tan(21t)=−23+13
Calculate
More Steps

Evaluate
tan(21t)=2−3+13
Use the inverse trigonometric function
21t=arctan(2−3+13)
Add the period of kπ,k∈Z to find all solutions
21t=arctan(2−3+13)+kπ,k∈Z
Solve the equation
More Steps

Evaluate
21t=arctan(2−3+13)+kπ
Multiply by the reciprocal
21t×2=(arctan(2−3+13)+kπ)×2
Multiply
t=(arctan(2−3+13)+kπ)×2
Multiply
t=2arctan(2−3+13)+2kπ
t=2arctan(2−3+13)+2kπ,k∈Z
t=2arctan(2−3+13)+2kπ,k∈Ztan(21t)=−23+13
Calculate
More Steps

Evaluate
tan(21t)=−23+13
Use the inverse trigonometric function
21t=arctan(−23+13)
Add the period of kπ,k∈Z to find all solutions
21t=arctan(−23+13)+kπ,k∈Z
Solve the equation
More Steps

Evaluate
21t=arctan(−23+13)+kπ
Multiply by the reciprocal
21t×2=(arctan(−23+13)+kπ)×2
Multiply
t=(arctan(−23+13)+kπ)×2
Multiply
t=2arctan(−23+13)+2kπ
t=2arctan(−23+13)+2kπ,k∈Z
t=2arctan(2−3+13)+2kπ,k∈Zt=2arctan(−23+13)+2kπ,k∈Z
Check if x=π+2kπ,k∈Z is a solution
8cos(π+2kπ)=12sin(π+2kπ)
Calculate
8cos(π)=12sin(π)
Simplify
More Steps

Evaluate
8cos(π)
Calculate
8(−1)
Simplify
−8
−8=12sin(π)
Simplify
More Steps

Evaluate
12sin(π)
Calculate
12×0
Any expression multiplied by 0 equals 0
0
−8=0
Check the equality
false
Since x=π+2kπ,k∈Z is not a solution,don’t include it
t=2arctan(2−3+13)+2kπ,k∈Zt=2arctan(−23+13)+2kπ,k∈Z
Solution
t=2arctan(−23+13)+kπ,k∈Z
Alternative Form
t≈−146.309932∘+180∘k,k∈Z
Alternative Form
t≈−2.55359+kπ,k∈Z
Show Solution
