Question
Factor the expression
h(8h−15−206h2)
Evaluate
8h2−15h−206h3
Rewrite the expression
h×8h−h×15−h×206h2
Solution
h(8h−15−206h2)
Show Solution

Find the roots
h1=1032−2063074i,h2=1032+2063074i,h3=0
Alternative Form
h1≈0.019417−0.269144i,h2≈0.019417+0.269144i,h3=0
Evaluate
8h2−15h−206h3
To find the roots of the expression,set the expression equal to 0
8h2−15h−206h3=0
Factor the expression
h(8h−15−206h2)=0
Separate the equation into 2 possible cases
h=08h−15−206h2=0
Solve the equation
More Steps

Evaluate
8h−15−206h2=0
Rewrite in standard form
−206h2+8h−15=0
Multiply both sides
206h2−8h+15=0
Substitute a=206,b=−8 and c=15 into the quadratic formula h=2a−b±b2−4ac
h=2×2068±(−8)2−4×206×15
Simplify the expression
h=4128±(−8)2−4×206×15
Simplify the expression
More Steps

Evaluate
(−8)2−4×206×15
Multiply the terms
(−8)2−12360
Rewrite the expression
82−12360
Evaluate the power
64−12360
Subtract the numbers
−12296
h=4128±−12296
Simplify the radical expression
More Steps

Evaluate
−12296
Evaluate the power
12296×−1
Evaluate the power
12296×i
Evaluate the power
23074×i
h=4128±23074×i
Separate the equation into 2 possible cases
h=4128+23074×ih=4128−23074×i
Simplify the expression
h=1032+2063074ih=4128−23074×i
Simplify the expression
h=1032+2063074ih=1032−2063074i
h=0h=1032+2063074ih=1032−2063074i
Solution
h1=1032−2063074i,h2=1032+2063074i,h3=0
Alternative Form
h1≈0.019417−0.269144i,h2≈0.019417+0.269144i,h3=0
Show Solution
