Question
Simplify the expression
8q2−192q6
Evaluate
8q2−48q6×4
Solution
8q2−192q6
Show Solution

Factor the expression
8q2(1−24q4)
Evaluate
8q2−48q6×4
Multiply the terms
8q2−192q6
Rewrite the expression
8q2−8q2×24q4
Solution
8q2(1−24q4)
Show Solution

Find the roots
q1=−6454,q2=0,q3=6454
Alternative Form
q1≈−0.451801,q2=0,q3≈0.451801
Evaluate
8q2−48q6×4
To find the roots of the expression,set the expression equal to 0
8q2−48q6×4=0
Multiply the terms
8q2−192q6=0
Factor the expression
8q2(1−24q4)=0
Divide both sides
q2(1−24q4)=0
Separate the equation into 2 possible cases
q2=01−24q4=0
The only way a power can be 0 is when the base equals 0
q=01−24q4=0
Solve the equation
More Steps

Evaluate
1−24q4=0
Move the constant to the right-hand side and change its sign
−24q4=0−1
Removing 0 doesn't change the value,so remove it from the expression
−24q4=−1
Change the signs on both sides of the equation
24q4=1
Divide both sides
2424q4=241
Divide the numbers
q4=241
Take the root of both sides of the equation and remember to use both positive and negative roots
q=±4241
Simplify the expression
More Steps

Evaluate
4241
To take a root of a fraction,take the root of the numerator and denominator separately
42441
Simplify the radical expression
4241
Multiply by the Conjugate
424×42434243
Simplify
424×42434454
Multiply the numbers
244454
Cancel out the common factor 4
6454
q=±6454
Separate the equation into 2 possible cases
q=6454q=−6454
q=0q=6454q=−6454
Solution
q1=−6454,q2=0,q3=6454
Alternative Form
q1≈−0.451801,q2=0,q3≈0.451801
Show Solution
