Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=2101−10210,x2=2101+10210
Alternative Form
x1≈−0.022272,x2≈101.022272
Evaluate
8x×10x−1010x×8=180
Simplify
More Steps

Evaluate
8x×10x−1010x×8
Multiply
More Steps

Multiply the terms
8x×10x
Multiply the terms
80x×x
Multiply the terms
80x2
80x2−1010x×8
Multiply the terms
80x2−8080x
80x2−8080x=180
Move the expression to the left side
80x2−8080x−180=0
Substitute a=80,b=−8080 and c=−180 into the quadratic formula x=2a−b±b2−4ac
x=2×808080±(−8080)2−4×80(−180)
Simplify the expression
x=1608080±(−8080)2−4×80(−180)
Simplify the expression
More Steps

Evaluate
(−8080)2−4×80(−180)
Multiply
More Steps

Multiply the terms
4×80(−180)
Rewrite the expression
−4×80×180
Multiply the terms
−57600
(−8080)2−(−57600)
Rewrite the expression
80802−(−57600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
80802+57600
x=1608080±80802+57600
Simplify the radical expression
More Steps

Evaluate
80802+57600
Add the numbers
65344000
Write the expression as a product where the root of one of the factors can be evaluated
6400×10210
Write the number in exponential form with the base of 80
802×10210
The root of a product is equal to the product of the roots of each factor
802×10210
Reduce the index of the radical and exponent with 2
8010210
x=1608080±8010210
Separate the equation into 2 possible cases
x=1608080+8010210x=1608080−8010210
Simplify the expression
More Steps

Evaluate
x=1608080+8010210
Divide the terms
More Steps

Evaluate
1608080+8010210
Rewrite the expression
16080(101+10210)
Cancel out the common factor 80
2101+10210
x=2101+10210
x=2101+10210x=1608080−8010210
Simplify the expression
More Steps

Evaluate
x=1608080−8010210
Divide the terms
More Steps

Evaluate
1608080−8010210
Rewrite the expression
16080(101−10210)
Cancel out the common factor 80
2101−10210
x=2101−10210
x=2101+10210x=2101−10210
Solution
x1=2101−10210,x2=2101+10210
Alternative Form
x1≈−0.022272,x2≈101.022272
Show Solution
