Question
Solve the equation
x1=−43,x2=0,x3=43
Alternative Form
x1≈−6.928203,x2=0,x3≈6.928203
Evaluate
8x×72=2x3×6
Multiply the terms
576x=2x3×6
Multiply the terms
576x=12x3
Add or subtract both sides
576x−12x3=0
Factor the expression
12x(48−x2)=0
Divide both sides
x(48−x2)=0
Separate the equation into 2 possible cases
x=048−x2=0
Solve the equation
More Steps

Evaluate
48−x2=0
Move the constant to the right-hand side and change its sign
−x2=0−48
Removing 0 doesn't change the value,so remove it from the expression
−x2=−48
Change the signs on both sides of the equation
x2=48
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±48
Simplify the expression
More Steps

Evaluate
48
Write the expression as a product where the root of one of the factors can be evaluated
16×3
Write the number in exponential form with the base of 4
42×3
The root of a product is equal to the product of the roots of each factor
42×3
Reduce the index of the radical and exponent with 2
43
x=±43
Separate the equation into 2 possible cases
x=43x=−43
x=0x=43x=−43
Solution
x1=−43,x2=0,x3=43
Alternative Form
x1≈−6.928203,x2=0,x3≈6.928203
Show Solution
